1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
A hybrid planar-mixed tetraphenyldibenzoperiflanthene/C70 photovoltaic cell
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/7/10.1063/1.4793195
1.
1. Y. Z. Lin, Y. F. Li, and X. W. Zhan, Chem. Soc. Rev. 41, 4245 (2012).
http://dx.doi.org/10.1039/c2cs15313k
2.
2. A. Mishra and P. Bauerle, Angew. Chem., Int. Ed. 51, 2020 (2012).
http://dx.doi.org/10.1002/anie.201102326
3.
3. Y. M. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan, and A. J. Heeger, Nat. Mater. 11, 44 (2012).
http://dx.doi.org/10.1038/nmat3160
4.
4. T. S. van der Poll, J. A. Love, T. Q. Nguyen, and G. C. Bazan, Adv. Mater. 24, 3646 (2012).
http://dx.doi.org/10.1002/adma.201201127
5.
5. X. Xiao, G. D. Wei, S. Y. Wang, J. D. Zimmerman, C. K. Renshaw, M. E. Thompson, and S. R. Forrest, Adv. Mater. 24, 1956 (2012).
http://dx.doi.org/10.1002/adma.201104261
6.
6. G. D. Wei, X. Xiao, S. Y. Wang, J. D. Zimmerman, K. Sun, V. V. Diev, M. E. Thompson, and S. R. Forrest, Nano Lett. 11, 4261 (2011).
http://dx.doi.org/10.1021/nl2022515
7.
7. G. Chen, H. Sasabe, Z. Q. Wang, X. F. Wang, Z. R. Hong, Y. Yang, and J. J. Kido, Adv. Mater. 24, 2768 (2012).
http://dx.doi.org/10.1002/adma.201200234
8.
8. B. E. Lassiter, J. D. Zimmerman, A. Panda, X. Xiao, and S. R. Forrest, Appl. Phys. Lett. 101, 063303 (2012).
http://dx.doi.org/10.1063/1.4742921
9.
9. R. Pandey, Y. L. Zou, and R. J. Holmes, Appl. Phys. Lett. 101, 033308 (2012).
http://dx.doi.org/10.1063/1.4737902
10.
10. S. R. Forrest, MRS Bull. 30, 28 (2005).
http://dx.doi.org/10.1557/mrs2005.5
11.
11. J. G. Xue, B. P. Rand, S. Uchida, and S. R. Forrest, Adv. Mater. 17, 66 (2005).
http://dx.doi.org/10.1002/adma.200400617
12.
12. D. Fujishima, H. Kanno, T. Kinoshita, E. Maruyama, M. Tanaka, M. Shirakawa, and K. Shibata, Sol. Energy Mater. Sol. C 93, 1029 (2009).
http://dx.doi.org/10.1016/j.solmat.2008.11.034
13.
13. M. Hirade and C. Adachi, Appl. Phys. Lett. 99, 153302 (2011).
http://dx.doi.org/10.1063/1.3650472
14.
14. D. Yokoyama, Z. Q. Wang, Y. J. Pu, K. Kobayashi, J. Kido, and Z. R. Hong, Sol. Energy Mater. Sol. C 98, 472 (2012).
http://dx.doi.org/10.1016/j.solmat.2011.10.014
15.
15. K. J. Bergemann and S. R. Forrest, Appl. Phys. Lett. 99, 243303 (2011).
http://dx.doi.org/10.1063/1.3668106
16.
16. S. Pfuetzner, J. Meiss, A. Petrich, M. Riede, and K. Leo, Appl. Phys. Lett. 94, 223307 (2009).
http://dx.doi.org/10.1063/1.3148664
17.
17. N. Li, B. E. Lassiter, R. R. Lunt, G. Wei, and S. R. Forrest, Appl. Phys. Lett. 94, 023307 (2009).
http://dx.doi.org/10.1063/1.3072807
18.
18. Y. M. Sun, C. J. Takacs, S. R. Cowan, J. H. Seo, X. Gong, A. Roy, and A. J. Heeger, Adv. Mater. 23, 2226 (2011).
http://dx.doi.org/10.1002/adma.201100038
19.
19. J. Meyer, S. Hamwi, M. Kroger, W. Kowalsky, T. Riedl, and A. Kahn, Adv. Mater. 24, 5408 (2012).
http://dx.doi.org/10.1002/adma.201201630
20.
20. A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao, and D. L. Kwong, Appl. Phys. Lett. 93, 221107 (2008).
http://dx.doi.org/10.1063/1.3039076
21.
21. D. W. Zhao, P. Liu, X. W. Sun, S. T. Tan, L. Ke, and A. K. K. Kyaw, Appl. Phys. Lett. 95, 153304 (2009).
http://dx.doi.org/10.1063/1.3250176
22.
22. D. W. Zhao, X. W. Sun, C. Y. Jiang, A. K. K. Kyaw, G. Q. Lo, and D. L. Kwong, Appl. Phys. Lett. 93, 083305 (2008).
http://dx.doi.org/10.1063/1.2976126
23.
23. P. Peumans, A. Yakimov, and S. R. Forrest, J. Appl. Phys. 95, 2938 (2004).
http://dx.doi.org/10.1063/1.1646446
24.
24. L. A. A. Pettersson, L. S. Roman, and O. Inganas, J. Appl. Phys. 86, 487 (1999).
http://dx.doi.org/10.1063/1.370757
25.
25. F. Yang, K. Sun, and S. R. Forrest, Adv. Mater. 19, 4166 (2007).
http://dx.doi.org/10.1002/adma.200700837
26.
26.American society for testing and materials Standards Nos. E1021, E948, and E973.
27.
27. C. H. Seaman, Sol. Energy 29, 291 (1982).
http://dx.doi.org/10.1016/0038-092X(82)90244-4
28.
28. N. C. Giebink, G. P. Wiederrecht, M. R. Wasielewski, and S. R. Forrest, Phys. Rev. B 82, 155305 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.155305
29.
29. R. Pandey, A. A. Gunawan, K. A. Mkhoyan, and R. J. Holmes, Adv. Funct. Mater. 22, 617 (2012).
http://dx.doi.org/10.1002/adfm.201101948
30.
30. M. L. Zhang, H. Wang, H. K. Tian, Y. H. Geng, and C. W. Tang, Adv. Mater. 23, 4960 (2011).
http://dx.doi.org/10.1002/adma.201102173
31.
31. P. Peumans and S. R. Forrest, Chem. Phys. Lett. 398, 27 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.09.030
32.
32. M. Y. Chan, C. S. Lee, S. L. Lai, M. K. Fung, F. L. Wong, H. Y. Sun, K. M. Lau, and S. T. Lee, J. Appl. Phys. 100, 094506 (2006).
http://dx.doi.org/10.1063/1.2363649
33.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/7/10.1063/1.4793195
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Absorption spectra of DBP, C70, and a 1:8 DBP:C70 mixture. Inset: molecular structural formulae of DBP (left), C70 (right).

Image of FIG. 2.

Click to view

FIG. 2.

(a) PL excitation spectra of DBP (left) and C70 (right) films with MoO3, exciton blocking (BPhen), and quenching (C60, NPD) layers. The excitation wavelengths (λex ) are indicated. Note that the PL intensities using MoO3 are similar to those employing the quenching materials, C60 and NPD, and are much less than interfaces employing the blocking material, BPhen. (b) Spatial distribution of absorbed optical power in the mixed-HJ (top) and PM-HJ (bottom) cells at a wavelength of λ = 500 nm. Device layer structures and the distances between the absorbed optical power peak and the MoO3/organic interface are indicated. Inset: illustration of two competing processes in the partially mixed, small molecule bulk heterojunction active region near to the MoO3 interface. Excitons (dashed circle) generated in the mixed layer close to the MoO3 interface can either quench at the MoO3 interface (“X”) or dissociate into electrons (solid circle) and holes (open circle) at a nearby DBP/C70 interface.

Image of FIG. 3.

Click to view

FIG. 3.

Spectrally corrected current density vs. voltage (J-V) characteristics under simulated AM1.5G, one sun illumination as a function of the thickness (x) of the neat C70 cap layer. The mixed-HJ corresponds to x = 0, and the hybrid PM-HJ cells have a C70 thickness of x > 0 as indicated. Inset: energy level diagram of the PM-HJ cell. The energy level data (shown in eV) are taken from literature referenced in text. The dashed lines in the BPhen layer indicate defect states induced during the metal deposition.

Image of FIG. 4.

Click to view

FIG. 4.

Calculated absorption efficiency (dashed lines), external quantum efficiency (triangles), and internal quantum efficiency (squares) spectra for the mixed-HJ and PM-HJ (with a x = 9 nm-thick C70 cap layer) OPV cells.

Tables

Generic image for table

Click to view

Table I.

Device performance for various DBP:C70 blend ratios.

Generic image for table

Click to view

Table II.

Performances of mixed-HJ and hybrid PM-HJ organic photovoltaic cells.

Loading

Article metrics loading...

/content/aip/journal/apl/102/7/10.1063/1.4793195
2013-02-19
2014-04-25

Abstract

We describe a hybrid planar-mixed heterojunction (PM-HJ) organic photovoltaic cell based on tetraphenyldibenzoperiflanthene (DBP) and C70 with a power conversion efficiency of up to 6.4% ± 0.3%. Optimized cells consist of a DBP:C70 mixed layer at a volume ratio of 1:8 and a 9-nm thick C70 cap layer. The external quantum efficiency (EQE) in the visible of the PM-HJ cell is up to 10% larger than the mixed-HJ cell that lacks a C70 acceptor cap layer. The improvement in EQE is attributed to reduced exciton quenching at the MoO3 anode buffer layer surface. This leads to an internal quantum efficiency >90% between the wavelengths of λ = 450 nm and 550 nm, suggesting efficient exciton dissociation and carrier extraction in the PM-HJ cell. The power conversion efficiency under simulated AM 1.5G, 1 sun irradiation increases from 5.7% ± 0.2% for the mixed-HJ cell to 6.4% ± 0.3% for the PM-HJ cell, with a short-current density of 12.3 ± 0.3 mA/cm2, open circuit voltage of 0.91 ± 0.01 V, and fill factor of 0.56 ± 0.01.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/7/1.4793195.html;jsessionid=1hs56cnxuhcg7.x-aip-live-06?itemId=/content/aip/journal/apl/102/7/10.1063/1.4793195&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A hybrid planar-mixed tetraphenyldibenzoperiflanthene/C70 photovoltaic cell
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/7/10.1063/1.4793195
10.1063/1.4793195
SEARCH_EXPAND_ITEM