1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Efficiency enhancement of organic photovoltaic devices using a Sm:Al compound electrode
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/7/10.1063/1.4793414
1.
1. J. W. Lim, D. Y. Cho, K. Eun, S. H. Choa, S. I. Na, J. Kim, and H. K. Kim, Sol. Energy Mater. Sol. Cells 105, 69 (2012).
http://dx.doi.org/10.1016/j.solmat.2012.05.036
2.
2. R. Sondergaard, M. Hosel, D. Angmo, T. T. Larsen, and F. Krebs, Mater. Today 15, 36 (2012).
http://dx.doi.org/10.1016/S1369-7021(12)70019-6
3.
3. F. C. Krebs, T. Tromholt, and M. Jorgensen, Nanoscale 2, 873 (2010).
http://dx.doi.org/10.1039/b9nr00430k
4.
4. C. W. Tang, Appl. Phys. Lett. 48, 183 (1986).
http://dx.doi.org/10.1063/1.96937
5.
5. P. Peumans, V. Bulovic, and S. R. Forrest, Appl. Phys. Lett. 76, 2650 (2000).
http://dx.doi.org/10.1063/1.126433
6.
6. J. Xue, B. P. Rand, S. Uchida, and S. R. Forrest, Adv. Mater. 17, 66 (2005).
http://dx.doi.org/10.1002/adma.200400617
7.
7. A. K. Pandey, P. E. Shaw, D. W. Samuel, and J. M. Nunzi, Appl. Phys. Lett. 94, 103303 (2009).
http://dx.doi.org/10.1063/1.3098472
8.
8. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nature Mater. 4, 864 (2005).
http://dx.doi.org/10.1038/nmat1500
9.
9. A. Hadipour, D. Cheyns, P. Heremans, and B. P. Rand, Adv. Energy Mater. 1, 930 (2011).
http://dx.doi.org/10.1002/aenm.201100250
10.
10. S.-B. Rim, R. F. Fink, J. C. Schoneboom, P. Erk, and P. Peumans, Appl. Phys. Lett. 91, 173504 (2007).
http://dx.doi.org/10.1063/1.2783202
11.
11. M. Y. Chan, S. L. Lai, M. K. Fung, S. W. Tong, and S. T. Lee, Appl. Phys. Lett. 82, 1784 (2003).
http://dx.doi.org/10.1063/1.1561579
12.
12. K. C. Lau, W. F. Xie, H. Y. Sun, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 88, 083507 (2006).
http://dx.doi.org/10.1063/1.2172019
13.
13. W. F. Xie, L. T. Zhang, and S. Y. Liu, Opt. Express 14, 10819 (2006).
http://dx.doi.org/10.1364/OE.14.010819
14.
14. Y. Q. Li, J. X. Tang, and L. S. Hung, Chem. Phys. Lett. 376, 90 (2003).
http://dx.doi.org/10.1016/S0009-2614(03)00961-8
15.
15. D. Pysch, A. Mette, and S. W. Glunz, Sol. Energy Mater. Sol. Cells 91, 1698 (2007).
http://dx.doi.org/10.1016/j.solmat.2007.05.026
16.
16. C. F. Zhang, J. C. Zhang, Y. Hao, Z. H. Lin, and C. X. Zhu, J. Appl. Phys. 110, 064504 (2011).
http://dx.doi.org/10.1063/1.3632971
17.
17. Y. Zang, J. S. Yu, J. Huang, R. Jiang, and G. Q. Huang, J. Phys. D: Appl. Phys. 45, 175101 (2012).
http://dx.doi.org/10.1088/0022-3727/45/17/175101
18.
18. J. Li, Q. Y. Bao, H. X. Wei, Z. Q. Xu, J. P. Yang, Y. Q. Li, S. T. Lee, and J. X. Tang, J. Mater. Chem. 22, 6285 (2012).
http://dx.doi.org/10.1039/c2jm30272a
19.
19. J. P. Yang, Y. Xiao, Y. H. Deng, S. Duhm, N. Ueno, S. T. Lee, Y. Q. Li, and J. X. Tang, Adv. Funct. Mater. 22, 600 (2012).
http://dx.doi.org/10.1002/adfm.201102136
20.
20. S. D. Cai, C. H. Gao, D. Y. Zhou, W. Gu, and L. S. Liao, Appl. Mater. Interfaces 4, 312 (2012).
http://dx.doi.org/10.1021/am2013568
21.
21. Y. H. Chen and D. G. Ma, J. Mater. Chem. 22, 18718 (2012).
http://dx.doi.org/10.1039/c2jm32246c
22.
22. J. Huang, J. S. Yu, Z. Q. Guan, and Y. D. Jiang, Appl. Phys. Lett. 97, 143301 (2010).
http://dx.doi.org/10.1063/1.3492838
23.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/7/10.1063/1.4793414
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

J-V characteristics of organic photovoltaic devices with different ratios of Sm:Al range from 1:1 to 1:5 and the control device with only pure Al cathode (a) in the dark (b) under the irradiation of AM1.5 G, 100 mW/cm2.

Image of FIG. 2.

Click to view

FIG. 2.

The external quantum efficiency of the organic photovoltaic devices with different ratios of Sm:Al range from 1:1 to 1:5 and the control device with only pure Al cathode.

Image of FIG. 3.

Click to view

FIG. 3.

(a) The schematic energy level of devices with Sm/Al compound cathode. (b) The curves of capacitance vs voltage at a frequency of 10 kHz for the device with and without Sm:Al layer.

Image of FIG. 4.

Click to view

FIG. 4.

The reflection of cathodes with Sm:Al (10 nm, 1:1 to 1:5)/Al (90 nm) and with only Al (100 nm).

Tables

Generic image for table

Click to view

Table I.

Performance parameters of organic photovoltaic devices with Sm:Al/Al compound cathode and with Al cathode.

Loading

Article metrics loading...

/content/aip/journal/apl/102/7/10.1063/1.4793414
2013-02-19
2014-04-18

Abstract

An effective cathode consisting of samarium (Sm) doped aluminum (Al) layer and a pure Al layer is reported for application in organic photovoltaic cells (OPVs). Standard copper phthalocyanine (CuPc)/C60 OPVs using this bilayer cathode show dramatically increased short-circuit current density and power conversion efficiency, which are 64% increased by employing a appropriate ratio of 1:3 of Sm:Al layer as compared with that of control devices with pure Al cathode. The photoelectric properties reveal that the improved efficiency is mainly related to the balance of the enhanced electron collection ability and the optimized optical reflection of a Sm doped Al layer.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/7/1.4793414.html;jsessionid=3ufkw11l2qde.x-aip-live-02?itemId=/content/aip/journal/apl/102/7/10.1063/1.4793414&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Efficiency enhancement of organic photovoltaic devices using a Sm:Al compound electrode
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/7/10.1063/1.4793414
10.1063/1.4793414
SEARCH_EXPAND_ITEM