1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Enhancement of optical gain and amplified spontaneous emission due to waveguide geometry in the conjugated polymer poly[2-methoxy-5-(2′-ethylhexyloxy)-p-phenylene vinylene]
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/7/10.1063/1.4793422
1.
1. B. J. Schwartz, Annu. Rev. Phys. Chem. 54, 141 (2003).
http://dx.doi.org/10.1146/annurev.physchem.54.011002.103811
2.
2. D. Braun and A. J. Heeger, Appl. Phys. Lett. 58(18 ), 1982 (1991).
http://dx.doi.org/10.1063/1.105039
3.
3. G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, and A. J. Heeger, Nature 357(6378 ), 477 (1992).
http://dx.doi.org/10.1038/357477a0
4.
4. T. Stoferle, N. Moll, T. Wahlbrink, J. Bolten, T. Mollenhauer, U. Scherf, and R. F. Mahrt, Nano Lett. 10(9 ), 3675 (2010).
http://dx.doi.org/10.1021/nl102149y
5.
5. A. E. Vasdekis, S. A. Moore, A. Ruseckas, T. F. Krauss, I. D. W. Samuel, and G. A. Turnbull, Appl. Phys. Lett. 91(5 ), 051124 (2007).
http://dx.doi.org/10.1063/1.2764553
6.
6. V. G. Kozlov, G. Parthasarathy, P. E. Burrows, V. B. Khalfin, J. Wang, S. Y. Chou, and S. R. Forrest, IEEE J. Quantum Electron. 36(1 ), 18 (2000).
http://dx.doi.org/10.1109/3.817634
7.
7. J. Yu, R. Lammi, A. J. Gesquiere, and P. F. Barbara, J. Phys. Chem. B 109(20 ), 10025 (2005).
http://dx.doi.org/10.1021/jp0506742
8.
8. V. Barzda, M. Vengris, L. Valkunas, R. van Grondelle, and H. van Amerongen, Biochemistry 39(34 ), 10468 (2000).
http://dx.doi.org/10.1021/bi992826n
9.
9. J. Hofkens, W. Schroeyers, D. Loos, M. Cotlet, F. Kohn, T. Vosch, M. Maus, A. Herrmann, K. Mullen, T. Gensch, and F. C. De Schryver, Spectrochim. Acta, Part A 57(11 ), 2093 (2001).
http://dx.doi.org/10.1016/S1386-1425(01)00499-1
10.
10. M. A. Baldo, R. J. Holmes, and S. R. Forrest, Phys. Rev. B 66(3 ), 035321 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.035321
11.
11. V. G. Kozlov, P. E. Burrows, G. Parthasarathy, and S. R. Forrest, Appl. Phys. Lett. 74(8 ), 1057 (1999).
http://dx.doi.org/10.1063/1.123480
12.
12. D. J. Pinner, R. H. Friend, and N. Tessler, J. Appl. Phys. 86(9 ), 5116 (1999).
http://dx.doi.org/10.1063/1.371488
13.
13. H. Sirringhaus, N. Tessler, and R. H. Friend, Science 280(5370 ), 1741 (1998).
http://dx.doi.org/10.1126/science.280.5370.1741
14.
14. M. Chakaroun, A. Coens, N. Fabre, F. Gourdon, J. Solard, A. Fischer, A. Boudrioua, and C. C. Lee, Opt. Express 19(2 ), 493 (2011).
http://dx.doi.org/10.1364/OE.19.000493
15.
16.
16. T. Riedl, T. Rabe, H. H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, and U. Scherf, Appl. Phys. Lett. 88(24 ), 241116 (2006).
http://dx.doi.org/10.1063/1.2211947
17.
17. Y. Yang, G. A. Turnbull, and I. D. W. Samuel, Appl. Phys. Lett. 92(16 ), 163306 (2008).
http://dx.doi.org/10.1063/1.2912433
18.
18. G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, Appl. Phys. Lett. 82(3 ), 313 (2003).
http://dx.doi.org/10.1063/1.1536249
19.
19. Z. E. Lampert, C. L. Reynolds, J. M. Papanikolas, and M. O. Aboelfotoh, J. Phys. Chem. B 116(42 ), 12835 (2012).
http://dx.doi.org/10.1021/jp304199u
20.
20. Z. E. Lampert, C. L. Reynolds, Jr., J. M. Papanikolas, and M. O. Aboelfotoh, “ Morphology and chain aggregation dependence of optical gain in thermally annealed films of the conjugated polymer MEH-PPV” (unpublished).
21.
21. Z. E. Lampert, S. E. Lappi, J. M. Papanikolas, and C. L. Reynolds, Jr., “ Enhanced optical gain in thin films of a conjugated polymer under picosecond excitation” (unpublished).
22.
22. I. B. Martini, I. M. Craig, W. C. Molenkamp, H. Miyata, S. H. Tolbert, and B. J. Schwartz, Nat. Nanotechnol. 2(10 ), 647 (2007).
http://dx.doi.org/10.1038/nnano.2007.294
23.
23. F. Lahoz, C. J. Oton, N. Capuj, M. Ferrer-Gonzalez, S. Cheylan, and D. Navarro-Urrios, Opt. Express 17(19 ), 16766 (2009).
http://dx.doi.org/10.1364/OE.17.016766
24.
24. B. Zhang, Y. Hou, Z. Lou, F. Teng, X. Liu, L. Meng, J. Shen, and Y. Wang, Appl. Phys. Lett. 101(15 ), 153305 (2012).
http://dx.doi.org/10.1063/1.4758927
25.
25. Y. Shi, J. Liu, and Y. Yang, J. Appl. Phys. 87(9 ), 4254 (2000).
http://dx.doi.org/10.1063/1.373062
26.
26. T. Q. Nguyen, V. Doan, and B. J. Schwartz, J. Chem. Phys. 110(8 ), 4068 (1999).
http://dx.doi.org/10.1063/1.478288
27.
27. T. Q. Nguyen, I. B. Martini, J. Liu, and B. J. Schwartz, J. Phys. Chem. B 104(2 ), 237 (2000).
http://dx.doi.org/10.1021/jp993190c
28.
28. T. Q. Nguyen, B. J. Schwartz, R. D. Schaller, J. C. Johnson, L. F. Lee, L. H. Haber, and R. J. Saykally, J. Phys. Chem. B 105(22 ), 5153 (2001).
http://dx.doi.org/10.1021/jp004456e
29.
29. D. H. Hu, J. Yu, and P. F. Barbara, J. Am. Chem. Soc. 121(29 ), 6936 (1999).
http://dx.doi.org/10.1021/ja990139d
30.
30. L. Smilowitz, A. Hays, A. J. Heeger, G. Wang, and J. E. Bowers, J. Chem. Phys. 98(8 ), 6504 (1993).
http://dx.doi.org/10.1063/1.464790
31.
31.Software: MODE Solutions, version 5.0, Lumerical Solutions, Inc.
32.
32. J. Buus, IEEE J. Quantum Electron. 18(7 ), 1083 (1982).
http://dx.doi.org/10.1109/JQE.1982.1071659
33.
33. H. Kogelnik and V. Ramaswam, Appl. Opt. 13(8 ), 1857 (1974).
http://dx.doi.org/10.1364/AO.13.001857
34.
34. W. Holzer, A. Penzkofer, T. Schmitt, A. Hartmann, C. Bader, H. Tillmann, D. Raabe, R. Stockmann, and H. H. Horhold, Opt. Quantum Electron. 33(2 ), 121 (2001).
http://dx.doi.org/10.1023/A:1007020731786
35.
35. J. Valenta, I. Pelant, and J. Linnros, Appl. Phys. Lett. 81(8 ), 1396 (2002).
http://dx.doi.org/10.1063/1.1502195
36.
36. D. R. Dunphy, S. B. Mendes, S. S. Saavedra, and N. R. Armstrong, Anal. Chem. 69(15 ), 3086 (1997).
http://dx.doi.org/10.1021/ac961272g
37.
37. J. H. Schmid, A. Delage, B. Lamontagne, J. Lapointe, S. Janz, P. Cheben, A. Densmore, P. Waldron, D. X. Xu, and K. P. Yap, Opt. Lett. 33(13 ), 1479 (2008).
http://dx.doi.org/10.1364/OL.33.001479
38.
38.Number of reflections proportional to tan θ/2, where θ is the propagation angle of the guided mode.
39.
39. K. L. Shaklee and R. F. Leheny, Appl. Phys. Lett. 18(11 ), 475 (1971).
http://dx.doi.org/10.1063/1.1653501
40.
40. L. Dal Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, Opt. Commun. 229(1–6 ), 337 (2004).
http://dx.doi.org/10.1016/j.optcom.2003.10.051
41.
41. S. Richardson, O. P. M. Gaudin, G. A. Turnbull, and I. D. W. Samuel, Appl. Phys. Lett. 91(26 ), 261104 (2007).
http://dx.doi.org/10.1063/1.2826276
42.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/7/10.1063/1.4793422
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Normalized edge emitted PL spectra collected from AWGs (a) and SWGs (b) at different pump energy densities using a pump stripe length of 0.1 cm. Inset: chemical structure of MEH-PPV.

Image of FIG. 2.

Click to view

FIG. 2.

Dependence of integrated emission intensity on pump energy density for AWGs (triangles) and SWGs (squares). Inset: PL linewidth (FWHM) of 0-1 transition vs. pump energy density. The pump stripe length is 0.1 cm.

Image of FIG. 3.

Click to view

FIG. 3.

Schematic of asymmetric (a) and symmetric (b) WG structures showing refractive index and layer thickness values.

Image of FIG. 4.

Click to view

FIG. 4.

Refractive index profile (blue curve) and calculated electric field intensity distribution (black curve) of TEo guided mode for AWG (a) and SWG (b) at the ASE wavelength vs. position. Inset: Contour plot of Poynting vector (Px) vs. position, showing density of power flowing through the WGs.

Image of FIG. 5.

Click to view

FIG. 5.

0-1 peak intensity as a function of distance from sample edge for SWGs (squares) and AWGs (triangles). The solid lines are exponential fits of the data.

Image of FIG. 6.

Click to view

FIG. 6.

Excitation length dependence of the peak intensity at λASE for AWGs (a) and SWGs (b). The pump energy densities are 5 μJ/cm2 (diamonds), 30 μJ/cm2 (squares), and 60 μJ/cm2 (triangles). Insets show the normalized PL spectra collected at three different stripe lengths with a pump energy density of 30 μJ/cm2. The threshold excitation length Lt is indicated.

Image of FIG. 7.

Click to view

FIG. 7.

Net gain coefficient as a function of the pump energy density for AWGs (triangles) and SWGs (squares).

Tables

Generic image for table

Click to view

Table I.

Amplified spontaneous emission characteristics of symmetric and asymmetric WGs, where Γ is the confinement factor, α is the WG loss, Eth is the threshold pump fluence, and gmax is the maximum net gain coefficient.

Loading

Article metrics loading...

/content/aip/journal/apl/102/7/10.1063/1.4793422
2013-02-22
2014-04-24

Abstract

We report enhanced amplified spontaneous emission (ASE) and optical gain performance in a conjugated polymer (CP)-based thin film waveguide (WG) Si(100)/SiO2/poly[2-methoxy-5-(2′-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV) by encapsulating the active layer with a transparent dielectric film of poly(methyl methacrylate) (PMMA). With index matched SiO2 and PMMA claddings, symmetric WGs are formed that exhibit increased mode confinement and reduced propagation loss enabling lower ASE threshold (40%) and higher optical gain (50%) compared to Si(100)/SiO2/MEH-PPV/air asymmetric WGs. An extremely large net gain coefficient of 500 cm−1 is achieved under picosecond pulse excitation, which is >4× larger than values previously reported in the literature. Fabrication of symmetric WGs requires no complex processing techniques, thus offering a simple, low-cost approach for effectively controlling the ASE behavior of CP-based WGs and related optical devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/7/1.4793422.html;jsessionid=6kpe27priwhl.x-aip-live-03?itemId=/content/aip/journal/apl/102/7/10.1063/1.4793422&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Enhancement of optical gain and amplified spontaneous emission due to waveguide geometry in the conjugated polymer poly[2-methoxy-5-(2′-ethylhexyloxy)-p-phenylene vinylene]
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/7/10.1063/1.4793422
10.1063/1.4793422
SEARCH_EXPAND_ITEM