1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Interface charge engineering at atomic layer deposited dielectric/III-nitride interfaces
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/7/10.1063/1.4793483
1.
1. W. Huang, T. P. Chou, Y. Niiyama, T. Nomura, and S. Yoshida, IEEE Electron Device Lett. 30(10 ), 10181020 (2009).
http://dx.doi.org/10.1109/LED.2009.2027820
2.
2. Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, and D. Ueda, IEEE Trans. Electron Devices 54(12 ), 33933399 (2007).
http://dx.doi.org/10.1109/TED.2007.908601
3.
3. M. Kanamura, T. Ohki, T. Kikkawa, K. Imanishi, T. Imada, A. Yamada, and N. Hara, IEEE Electron Device Lett. 31(3 ), 189191 (2010).
http://dx.doi.org/10.1109/LED.2009.2039026
4.
4. Y. Cai, Y. Zhou, K. M. Lau, and K. J. Chen, IEEE Trans. Electron Devices 53(9 ), 22072215 (2006).
http://dx.doi.org/10.1109/TED.2006.881054
5.
5. R. Chu, A. Corrion, M. Chen, R. Li, D. Wong, D. Zehnder, B. Hughes, and K. Boutros, IEEE Electron Device Lett. 32(5 ), 632634 (2011).
http://dx.doi.org/10.1109/LED.2011.2118190
6.
6. T. Palacios, A. Chakraborty, S. Rajan, C. Poblenz, S. Keller, S. P. DenBaars, J. S. Speck, and U. K. Mishra, IEEE Electron Device Lett. 26(11 ), 781783 (2005).
http://dx.doi.org/10.1109/LED.2005.857701
7.
7. Y.-F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, Appl. Phys. Lett. 69, 1438 (1996).
http://dx.doi.org/10.1063/1.117607
8.
8. P. D. Ye, B. Yang, K. K. Ng, J. Bude, G. D. Wilk, S. Halder, and J. C. M. Hwang, Appl. Phys. Lett. 86, 063501 (2005).
http://dx.doi.org/10.1063/1.1861122
9.
9. Y. Q. Wu, P. D. Ye, G. D. Wilk, and B. Yang, Mater. Sci. Eng., B 135, 282 (2006).
http://dx.doi.org/10.1016/j.mseb.2006.08.020
10.
10. D. Gregusova, R. Stoklas, K. Cico, T. Lalinsky, and P. Kordos, Semicond. Sci. Technol. 22, 947 (2007).
http://dx.doi.org/10.1088/0268-1242/22/8/021
11.
11. P. Kordos, D. Gregusova, R. Stoklas, S. Gazi, and J. Novak, Solid-State Electron. 52, 973 (2008).
http://dx.doi.org/10.1016/j.sse.2008.01.028
12.
12. Y.-Z. Yue, Y. Hao, and J.-C. Zhang, in IEEE Proceedings of the Compound Semiconductor Integrated Circuit Symposium CSIC, Monterey, CA, USA, 12-15 October 2008.
13.
13. Q. Feng, Y. Hao, and Y.-Z. Yue, Semicond. Sci. Technol. 24, 025030 (2009).
http://dx.doi.org/10.1088/0268-1242/24/2/025030
14.
14. O. I. Saadat, J. W. Chung, E. L. Piner, and T. Palacios, IEEE Electron Device Lett. 30(12 ), 1254 (2009).
http://dx.doi.org/10.1109/LED.2009.2032938
15.
15. Z. H. Liu, G. I. Ng, S. Arulkumaran, Y. K. T. Maung, K. L. Teo, S. C. Foo, and V. Sahmuganathan, Appl. Phys. Lett. 95, 223501 (2009).
http://dx.doi.org/10.1063/1.3268474
16.
16. X. Xin, J. Shi, L. Liu, J. Edwards, K. Swaminathan, M. Pabisz, M. Murphy, L. F. Eastman, and M. Pophristic, IEEE Electron Device Lett. 30(10 ), 1027 (2009).
http://dx.doi.org/10.1109/LED.2009.2029130
17.
17. J. Shi, L. F. Eastman, X. Xin, and M. Pophristic, Appl. Phys. Lett. 95, 042103 (2009).
http://dx.doi.org/10.1063/1.3190506
18.
18. J. Shi and L. F. Eastman, IEEE Electron Device Lett. 32(3 ), 312 (2011).
http://dx.doi.org/10.1109/LED.2010.2098839
19.
19. Z. H. Liu, G. I. Ng, S. Arulkumaran, Y. K. T. Maung, and H. Zhou, Appl. Phys. Lett. 98, 163501 (2011).
http://dx.doi.org/10.1063/1.3573794
20.
20. R. D. Long and P. C. McIntyre, Materials 5, 1297 (2012).
http://dx.doi.org/10.3390/ma5071297
21.
21. S. Stemmer, V. Chobpattana, and S. Rajan, Appl. Phys. Lett. 100, 233510 (2012).
http://dx.doi.org/10.1063/1.4724330
22.
22. M. Esposto, S. Krishnamoorthy, D. Nath, S. Bajaj, T.-H. Hung and S. Rajan, Appl. Phys. Lett. 99, 133503 (2011).
http://dx.doi.org/10.1063/1.3645616
23.
23. J. Son, V. Chobpattana, B. M. McSkimming, and S. Stemmer, Appl. Phys. Lett. 101, 102905 (2012).
http://dx.doi.org/10.1063/1.4751466
24.
24. S. Ganguly, J. Verma, G. Li, T. Zimmermann, H. Xing, and D. Jena, Appl. Phys. Lett. 99, 193504 (2011).
http://dx.doi.org/10.1063/1.3658450
25.
25. T.-H. Hung, M. Esposto, and S. Rajan, Appl. Phys. Lett. 99, 162104 (2011).
http://dx.doi.org/10.1063/1.3653805
26.
26. S. Rajan, A. Chini, M. Wong, J. S. Speck, and U. K. Mishra, J. Appl. Phys. 102, 044501 (2007).
http://dx.doi.org/10.1063/1.2769950
27.
27. P. Lundgren, M. O. Anderson, and K. R. Farmer, J. Appl. Phys. 74, 4780 (1993).
http://dx.doi.org/10.1063/1.355311
28.
28. I. C. Kizilyalli, J. W. Lyding, and K. Hess, IEEE Electron Device Lett. 18(3 ), 81 (1997).
http://dx.doi.org/10.1109/55.556087
29.
29.Saint-Gobain Crystals-Photonic Materials, 33 Powers St., Milford, NH 03055, USA.
30.
30.Kyma Technologies, 8829 Midway West Rd., Raleigh, NC 27617, USA.
31.
31.NTT Advanced Technology Corporation, Shinjuku Mitsui Bldg. 2-1-1, Nishi-shinjuku, Shinjuku Ku, Tokyo, 163-0431, Japan.
32.
32. Y.-C. Yeo, T.-J. King, and C. Hu, J. Appl. Phys. 92, 7266 (2002).
http://dx.doi.org/10.1063/1.1521517
33.
33. G. J. Burek, Y. Hwang, A. D. Carter, V. Chobpattana, J. J. M. Law, W. J. Mitchell, B. Thibeault, S. Stemmer, and M. J. W. Rodwell, J. Vac. Sci. Technol. B 29, 040603 (2011).
http://dx.doi.org/10.1116/1.3610989
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/7/10.1063/1.4793483
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) C-V characteristics for Al2O3/Ga-polar GaN before PMA. (b) Flat-band voltage versus oxide thickness for the Ga-polar GaN for different PMA temperatures.

Image of FIG. 2.

Click to view

FIG. 2.

(a) C-V profile for Al2O3/N-polar GaN after 400 °C PMA. (b) Flat-band voltage versus oxide thickness for Al2O3/N-polar GaN at different temperature anneals.

Image of FIG. 3.

Click to view

FIG. 3.

(a) C-V profile for Al2O3/m-plane GaN without PMA. (b) Flat-band voltage versus oxide thickness for the m-plane GaN for different PMA temperatures.

Image of FIG. 4.

Click to view

FIG. 4.

C-V profile for Al2O3/Al0.3Ga0.7N/AlN/ GaN before and after 400 °C, 450 °C, 500 °C PMA.

Image of FIG. 5.

Click to view

FIG. 5.

Gate leakage current in Al2O3/Ga-polar GaN after different PMA temperatures showing suppression of leakage with increased PMA.

Tables

Generic image for table

Click to view

Table I.

Electric field in the oxide and interface charge density for different polarities of GaN after PMA.

Loading

Article metrics loading...

/content/aip/journal/apl/102/7/10.1063/1.4793483
2013-02-22
2014-04-19

Abstract

Interface charges at atomic layer deposited Al2O3/III-nitride interfaces were investigated for III-nitride layers of different polarity. A large positive sheet charge density is induced at the Al2O3/III-nitride interface on all the orientations of GaN and Ga-polar AlGaN, and this sheet charge can be significantly altered using post-metallization anneals. It is proposed that the charges are caused by interfacial defects that can be passivated and neutralized through a H2 based anneal. Tailoring of the interface charge density described here can be used to improve critical device characteristics such as gate leakage and electron transport, and for lateral electrostatic engineering.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/7/1.4793483.html;jsessionid=22ai0xc7o1ass.x-aip-live-02?itemId=/content/aip/journal/apl/102/7/10.1063/1.4793483&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Interface charge engineering at atomic layer deposited dielectric/III-nitride interfaces
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/7/10.1063/1.4793483
10.1063/1.4793483
SEARCH_EXPAND_ITEM