1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Origin of the defects-induced ferromagnetism in un-doped ZnO single crystals
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/7/10.1063/1.4793574
1.
1. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).
http://dx.doi.org/10.1126/science.1065389
2.
2. M. Venkatesan, C. B. Fitzgerald, and J. M. D. Coey, Nature (London) 430, 630 (2004).
http://dx.doi.org/10.1038/430630a
3.
3. C. D. Pemmaraju and S. Sanvito, Phys. Rev. Lett. 94, 217205 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.217205
4.
4. N. H. Hong, J. Sakai, N. Poirot, and V. Brizé, Phys. Rev. B 73, 132404 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.132404
5.
5. H. Pan, J. B. Yi, L. Shen, R. Q. Wu, J. H. Yang, J. Y. Lin, Y. P. Feng, J. Ding, L. H. Van, and J. H. Yin, Phys. Rev. Lett. 99, 127201 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.127201
6.
6. Q. Xu, H. Schmidt, S. Zhou, K. Potzger, M. Helm, H. Hochmuth, M. Lorenz, A. Setzer, P. Esquinazi, C. Meinecke, and M. Grundmann, Appl. Phys. Lett. 92, 082508 (2008).
http://dx.doi.org/10.1063/1.2885730
7.
7. M. Khalid, M. Ziese, A. Setzer, P. Esquinazi, M. Lorenz, H. Hochmuth, M. Grundmann, D. Spemann, T. Butz, G. Brauer, W. Anwand, G. Fischer, W. A. Adeagbo, W. Hergert, and A. Ernst, Phys. Rev. B 80, 035331 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.035331
8.
8. J. B. Yi, C. C. Lim, G. Z. Xing, H. M. Fan, L. H. Van, S. L. Huang, K. S. Yang, X. L. Huang, X. B. Qin, B. Y. Wang, T. Wu, L. Wang, H. T. Zhang, X. Y. Gao, T. Liu, A. T. S. Wee, Y. P. Feng, and J. Ding, Phys. Rev. Lett. 104, 137201 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.137201
9.
9. S. Banerjee, M. Mandal, N. Gayathri, and M. Sardar, Appl. Phys. Lett. 91, 182501 (2007).
http://dx.doi.org/10.1063/1.2804081
10.
10. P. Zhan, W. Wang, C. Liu, Y. Hu, Z. Li, Z. Zhang, P. Zhang, B. Wang, and X. Cao, J. Appl. Phys. 111, 033501 (2012).
http://dx.doi.org/10.1063/1.3679560
11.
11. C. Martínez-Boubeta, J. I. Beltrán, Ll. Balcells, Z. Konstantinović, S. Valencia, D. Schmitz, J. Arbiol, S. Estrade, J. Cornil, and B. Martínez, Phys. Rev. B 82, 024405 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.024405
12.
12. J. Osorio-Guillén, S. Lany, S. V. Barabash, and A. Zunger, Phys. Rev. Lett. 96, 107203 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.107203
13.
13. N. H. Hong, N. Poirot, and J. Sakai, Phys. Rev. B 77, 033205 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.033205
14.
14. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).
http://dx.doi.org/10.1126/science.287.5455.1019
15.
15. H. Ohno, Science 281, 951 (1998).
http://dx.doi.org/10.1126/science.281.5379.951
16.
16. T. Jungwirth, J. Sinova, J. Mašek, J. Kučera, and A. H. MacDonald, Rev. Mod. Phys. 78, 809 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.809
17.
17. G. Xing, D. Wang, J. Yi, L. Yang, M. Gao, M. He, J. Yang, J. Ding, T. C. Sum, and T. Wu, Appl. Phys. Lett. 96, 112511 (2010).
http://dx.doi.org/10.1063/1.3340930
18.
18. D. A. Schwartz and D. R. Gamelin, Adv. Mater. 16, 2115 (2004).
http://dx.doi.org/10.1002/adma.200400456
19.
19. X. Zhang, Y. H. Cheng, L. Y. Li, H. Liu, X. Zuo, G. H. Wen, L. Li, R. K. Zheng, and S. P. Ringer, Phys. Rev. B 80, 174427 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.174427
20.
20. T. Li, C. S. Ong, T. S. Herng, J. B. Yi, N. N. Bao, J. M. Xue, Y. P. Feng, and J. Ding, Appl. Phys. Lett. 98, 152505 (2011).
http://dx.doi.org/10.1063/1.3581046
21.
21. F. Golmar, A. M. Mudarra Navarro, C. E. Rodríguez Torres, F. H. Sánchez, F. D. Saccone, P. C. dos Santos Claro, G. A. Benítez, and P. L. Schilardi, Appl. Phys. Lett. 92, 262503 (2008).
http://dx.doi.org/10.1063/1.2952839
22.
22. M. Khalid, A. Setzer, M. Ziese, P. Esquinazi, D. Spemann, A. Pöppl, and E. Goering, Phys. Rev. B 81, 214414 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.214414
23.
23. D. A. Crandles, B. DesRoches, and F. S. Razavi, J. Appl. Phys. 108, 053908 (2010).
http://dx.doi.org/10.1063/1.3481344
24.
24. D. K. Mishra, P. Kumar, M. K. Sharma, J. Das, S. K. Singh, B. K. Roul, S. Varma, R. Chatterjee, V. V. Srinivasu, and D. Kanjilal, Physica B 405, 2659 (2010).
http://dx.doi.org/10.1016/j.physb.2010.03.047
25.
25. K. Potzger, J. Osten, A. A. Levin, A. Shalimov, G. Talut, H. Reuther, S. Arpaci, D. Bürger, H. Schmidt, T. Nestler, and D. C. Meyer, J. Magn. Magn. Mater. 323, 1551 (2011).
http://dx.doi.org/10.1016/j.jmmm.2011.01.018
26.
26. S. M. M. Yee, D. A. Crandles, and L. V. Goncharova, J. Appl. Phys. 110, 033906 (2011).
http://dx.doi.org/10.1063/1.3611034
27.
27. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, Appl. Phys. Lett. 68, 403 (1996).
http://dx.doi.org/10.1063/1.116699
28.
28. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, J. Appl. Phys. 79, 7983 (1996).
http://dx.doi.org/10.1063/1.362349
29.
29. A. V. Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, J. Phys. Chem. B 104, 1715 (2000).
http://dx.doi.org/10.1021/jp993327z
30.
30. P. Zhan, W. Wang, Z. Xie, Z. Li, Z. Zhang, P. Zhang, B. Wang, and X. Cao, Appl. Phys. Lett. 101, 031913 (2012).
http://dx.doi.org/10.1063/1.4737881
31.
31. R. B. M. Cross, M. M. De Souza, and E. M. Sankara Narayanan, Nanotechnology 16, 2188 (2005).
http://dx.doi.org/10.1088/0957-4484/16/10/035
32.
32. W. M. Kwok, A. B. Djurišić, Y. H. Leung, W. K. Chan, and D. L. Phillips, Appl. Phys. Lett. 87, 093108 (2005).
http://dx.doi.org/10.1063/1.2035871
33.
33. Y. W. Heo, D. P. Norton, and S. J. Pearton, J. Appl. Phys. 98, 073502 (2005).
http://dx.doi.org/10.1063/1.2064308
34.
34. M. Trunk, V. Venkatachalapathy, A. Galeckas, and A. Yu. Kuznetsov, Appl. Phys. Lett. 97, 211901 (2010).
http://dx.doi.org/10.1063/1.3518480
35.
35. H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, Adv. Funct. Mater. 20, 561 (2010).
http://dx.doi.org/10.1002/adfm.200901884
36.
36. F. A. Selim, M. H. Weber, D. Solodovnikov, and K. G. Lynn, Phys. Rev. Lett. 99, 085502 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.085502
37.
37. L. C. Feldman, J. W. Mayer, and S. T. Picraux, Materials Analysis by Ion Channeling: Submicron Crystallography (Academic, New York, 1982).
38.
38. L. E. Halliburton, N. C. Giles, N. Y. Garces, M. Luo, C. Xu, L. Bai, and L. A. Boatner, Appl. Phys. Lett. 87, 172108 (2005).
http://dx.doi.org/10.1063/1.2117630
39.
39. A. Janotti and C. G. Van de Walle, Phys. Rev. B 76, 165202 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.165202
40.
40. W. Lim, V. Craciun, K. Siebein, B. P. Gila, D. P. Norton, S. J. Pearton, and F. Renb, Appl. Surf. Sci. 254, 2396 (2008).
http://dx.doi.org/10.1016/j.apsusc.2007.09.066
41.
41. J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Nature Mater. 4, 173 (2005).
http://dx.doi.org/10.1038/nmat1310
42.
42. C. H. Patterson, Phys. Rev. B 74, 144432 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.144432
43.
43. F. Tuomisto, V. Ranki, K. Saarinen, and D. C. Look, Phys. Rev. Lett. 91, 205502 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.205502
44.
44. Z. Q. Chen, S. J. Wang, M. Maekawa, A. Kawasuso, H. Naramoto, X. L. Yuan, and T. Sekiguchi, Phys. Rev. B 75, 245206 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.245206
45.
45. A. P. Roth, J. B. Webb, and D. F. Williams, Phys. Rev. B 25, 7836 (1982).
http://dx.doi.org/10.1103/PhysRevB.25.7836
46.
46. F. A. Kroger, The Chemistry of Imperfect Crystals (North-Holland, Amsterdam, 1974).
47.
47. H. S. Kang, J. S. Kang, J. W. Kim, and S. Y. Lee, J. Appl. Phys. 95, 1246 (2004).
http://dx.doi.org/10.1063/1.1633343
48.
48. A. Janotti and C. G. Van de Walle, Appl. Phys. Lett. 87, 122102 (2005).
http://dx.doi.org/10.1063/1.2053360
49.
49. L. S. Vlasenko and G. D. Watkins, Phys. Rev. B 71, 125210 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.125210
50.
50. C. G. Van de Walle, Phys. Rev. Lett. 85, 1012 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.1012
51.
51. A. Janotti and C. G. Van de Walle, Nature Mater. 6, 44 (2007).
http://dx.doi.org/10.1038/nmat1795
52.
52. M.-H. Du and D. J. Singh, Phys. Rev. B 79, 205201 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.205201
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/7/10.1063/1.4793574
Loading
/content/aip/journal/apl/102/7/10.1063/1.4793574
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/102/7/10.1063/1.4793574
2013-02-22
2014-11-27

Abstract

We clarified, in this Letter, that in un-doped ZnO single crystals after thermal annealing in flowing argon, the defects-induced room-temperature ferromagnetism was originated from the surface defects and specifically, from singly occupied oxygen vacancies denoted as F+, by the optical and electrical properties measurements as well as positron annihilation analysis. In addition, a positive linear relationship was observed between the ferromagnetism and the F+ concentration, which is in support with the above clarification.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/7/1.4793574.html;jsessionid=bb9dsugfb5s9h.x-aip-live-02?itemId=/content/aip/journal/apl/102/7/10.1063/1.4793574&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Origin of the defects-induced ferromagnetism in un-doped ZnO single crystals
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/7/10.1063/1.4793574
10.1063/1.4793574
SEARCH_EXPAND_ITEM