1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Confinement and integration of magnetic impurities in silicon
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/8/10.1063/1.4792350
1.
1. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).
http://dx.doi.org/10.1126/science.287.5455.1019
2.
2. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. Von Molnár, M. L. Roukes, A.Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).
http://dx.doi.org/10.1126/science.1065389
3.
3. A. H. MacDonald, P. Schiffer, and N. Samarth, Nature Mater. 4, 195 (2005).
http://dx.doi.org/10.1038/nmat1325
4.
4. K. Olejník, M. H. S. Owen, V. Novák, J. Mašek, A. C. Irvine, J. Wunderlich, and T. Jungwirth, Phys. Rev. B 78, 054403 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.054403
5.
5. Y. Park, A. Hanbicki, S. Erwin, C. Hellberg, J. Sullivan, J. Mattson, T. Ambrose, A. Wilson, G. Spanos, and B. Jonker, Science 295, 651 (2002).
http://dx.doi.org/10.1126/science.1066348
6.
6. S. Yada, S. Sugahara, and M. Tanaka, Appl. Phys. Lett. 93, 193108 (2008).
http://dx.doi.org/10.1063/1.3023070
7.
7. M. Jamet, A. Barski, T. Devillers, V. Poydenot, R. Dujardin, P. Bayle-Guillemaud, J. Rothman, E. Bellet-Amalric, A. Marty, J. Cibert, R. Mattana, and S. Tatarenko, Nature Mater. 5, 653 (2006).
http://dx.doi.org/10.1038/nmat1686
8.
8. S. Yada, P. N. Hai, S. Sugahara, and M. Tanaka, J. Appl. Phys. 110, 073903 (2011).
http://dx.doi.org/10.1063/1.3638701
9.
9. Y. Zhang, Q. Jiang, D. J. Smith, and J. J. Drucker, J. Appl. Phys. 98, 033512 (2005).
http://dx.doi.org/10.1063/1.1988973
10.
10. F. M. Zhang, X. C. Liu, J. Gao, X.S. Wu, Y. W. Du, H. Zhu, J. Q. Xiao, and P. Chen, Appl. Phys. Lett. 85, 786 (2004).
http://dx.doi.org/10.1063/1.1775886
11.
11. J. H. Yao, H. H. Lin, Y. L. Soo, T. S. Wu, J. L. Tsai, M. D. Lan, and T. S. Chin, Appl. Phys. Lett. 100, 092404 (2012).
http://dx.doi.org/10.1063/1.3691173
12.
12. M. Bolduc, C. Awo-Affouda, A. Stollenwerk, M. B. Huang, F. G. Ramos, G. Agnello, and V. P. LaBella, Phys. Rev. B 71, 033302 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.033302
13.
13. M. Krause, A. Stollenwerk, J. Reed, V. P. LaBella, M. Hortamani, P. Kratzer, and M. Scheffler, Phys. Rev. B 75, 205326 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.205326
14.
14. H. Liu and P. Reinke, Surf. Sci. 602, 986 (2008).
http://dx.doi.org/10.1016/j.susc.2007.12.043
15.
15. C. Nolph, K. R. Simov, H. Liu, and P. Reinke, J. Phys. Chem. C 114, 19727 (2010).
http://dx.doi.org/10.1021/jp105620d
16.
16. A. Fuhrer, F. J. Rueß, N. Moll, A. Curioni, and D. Widmer, Phys. Rev. Lett. 109, 146102 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.146102
17.
17. H. Lippitz, J. J. Paggel, and P. Fumagalli, Surf. Sci. 575, 307 (2005).
http://dx.doi.org/10.1016/j.susc.2004.11.029
18.
18. F. J. Rueß, W. Pok, T. C. G. Reusch, M. J. Butcher, K. E. J. Goh, L. Oberbeck, G. Scappucci, A. R. Hamilton, and M. Y. Simmons, Small 3, 563 (2007).
http://dx.doi.org/10.1002/smll.200600680
19.
19. M. Hortamani, H. Wu, P. Kratzer, and M. Scheffler, Phys. Rev. B 74, 205305 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.205305
20.
20. G. Scappucci, G. Capellini, and M. Y. Simmons, Phys. Rev. B 80, 233202 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.233202
21.
21. M. C. Militello and S. W. Gaarenstroom, Surf. Sci. Spectra 8, 200 (2001).
http://dx.doi.org/10.1116/11.20020401
22.
22.This estimate is based on a native SiO2 thickness of 1 nm, where 44% of Si is consumed, and the assumption that Mn prefers to move toward the surface rather than toward the bulk Si.
23.
23. J. L. Benton and L. C. Kimerling, J. Electrochem. Soc. 129, 2098 (1982).
http://dx.doi.org/10.1149/1.2124387
24.
24. R. Castagné and A. Vapaille, Surf. Sci. 28, 157 (1971).
http://dx.doi.org/10.1016/0039-6028(71)90092-6
25.
25. Z. Chen, K. Yasutake, and A. Doolittle, Appl. Phys. Lett. 63, 2117 (1993).
http://dx.doi.org/10.1063/1.110558
26.
26. B. Hoex, J. J. H. Gielis, M. C. M. Van de Sanden, and W. M. M. Kessels, J. Appl. Phys. 104, 113703 (2008).
http://dx.doi.org/10.1063/1.3021091
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/8/10.1063/1.4792350
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Filled-state RT STM images of Mn wires deposited at (a) T sub = −80 °C and (b) T sub = 50 °C. (c) High-resolution STM image after 0.04 ML exposure to Mn showing multiple dimer vacancy complexes as wire seeding sites. (d) STM surface topography after growth of 2 nm of epitaxial Si. STM conditions: −2 V, 0.2 nA.

Image of FIG. 2.

Click to view

FIG. 2.

(a) SIMS depth profile comparison for two substrates, with Mn deposited at T sub = −80 °C [D1] and 50 °C [D2] showing the segregation of Mn and the formation of a Mn δ-layer. (b) XPS spectra revealing the fraction between elemental and oxidized Mn for (b) different Si cap thicknesses and (c) a Mn layer with a 2 nm Si cap as-grown and after chemical removal [SP-BHF-SP] and regrowth of the oxide layer.

Image of FIG. 3.

Click to view

FIG. 3.

High (cyan) and low (blue) frequency C-V characteristics found for MOS devices with the lowest Si [Si2] and Mn D it [Mn4] and the highest Mn D it [Mn2].

Image of FIG. 4.

Click to view

FIG. 4.

Summary of D it values at midgap for all MOS devices investigated in this work. Additional device details are given in the text.

Loading

Article metrics loading...

/content/aip/journal/apl/102/8/10.1063/1.4792350
2013-02-25
2014-04-18

Abstract

Integration of magnetic impurities into semiconductor materials is an essential ingredient for the development of spintronic devices such as dilute magnetic semiconductors. While successful growth of ferromagnetic semiconductors was reported for III-V and II-VI compounds, efforts to build devices with silicon technology were hampered by segregation and clustering of magnetic impurities such as manganese (Mn). Here, we report on a surface-based integration of Mn atoms into a silicon host. Control of Mn diffusion and low-temperature silicon epitaxy lead to confined Mn δ-layers with low interface trap densities, potentially opening the door for a new class of spintronic devices in silicon.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/8/1.4792350.html;jsessionid=3nk2lbuj4anto.x-aip-live-03?itemId=/content/aip/journal/apl/102/8/10.1063/1.4792350&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Confinement and integration of magnetic impurities in silicon
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/8/10.1063/1.4792350
10.1063/1.4792350
SEARCH_EXPAND_ITEM