1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Ambipolar organic light-emitting electrochemical transistor based on a heteroleptic charged iridium(III) complex
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/8/10.1063/1.4792842
1.
1. H. Klauk, Chem. Soc. Rev. 39, 2643 (2010).
http://dx.doi.org/10.1039/b909902f
2.
2. R. P. Ortiz, A. Facchetti, and T. J. Marks, Chem. Rev. 110, 205 (2010).
http://dx.doi.org/10.1021/cr9001275
3.
3. T. Sekitani, U. Zschieschang, H. Klauk, and T. Someya, Nature Mater. 9, 1015 (2010).
http://dx.doi.org/10.1038/nmat2896
4.
4. B. Crone, A. Dodabalapur, Y. Y. Lin, R. W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. E. Katz, and W. Li, Nature 403, 521 (2000).
http://dx.doi.org/10.1038/35000530
5.
5. A. Hepp, H. Heil, W. Weise, M. Ahles, R. Schmechel, and H. von Seggern, Phys. Rev. Lett. 91, 157406 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.157406
6.
6. J. H. Seo, E. B. Namdas, A. Gutacker, A. J. Heeger, and G. C. Bazan, Adv. Funct. Mater. 21, 3667 (2011).
http://dx.doi.org/10.1002/adfm.201100682
7.
7. R. Capelli, S. Toffanin, G. Generali, H. Usta, A. Facchetti, and M. Muccini, Nature Mater. 9, 496 (2010).
http://dx.doi.org/10.1038/nmat2751
8.
8. F. Cicoira and C. Santato, Adv. Funct. Mater. 17, 3421 (2007).
http://dx.doi.org/10.1002/adfm.200700174
9.
9. G. Gelinck, P. Heremans, K. Nomoto, and T. D. Anthopoulos, Adv. Mater. 22, 3778 (2010).
http://dx.doi.org/10.1002/adma.200903559
10.
10. E. B. Namdas, M. Tong, P. Ledochowitsch, S. R. Mednick, J. D. Yuen, D. Moses, and A. J. Heeger, Adv. Mater. 21, 799 (2009).
http://dx.doi.org/10.1002/adma.200802436
11.
11. G. Tsiminis, Y. Wang, P. E. Shaw, A. L. Kanibolotsky, I. F. Perepichka, M. D. Dawson, P. J. Skabara, G. A. Turnbull, and I. D. W. Samuel, Appl. Phys. Lett. 94, 243304 (2009).
http://dx.doi.org/10.1063/1.3152782
12.
12. J. Zaumseil and H. Sirringhaus, Chem. Rev. 107, 1296 (2007).
http://dx.doi.org/10.1021/cr0501543
13.
13. C. Yumusak and N. S. Sariciftci, Appl. Phys. Lett. 97, 033302 (2010).
http://dx.doi.org/10.1063/1.3464558
14.
14. J. Liu, I. Engquist, X. Crispin, and M. Berggren, J. Am. Chem. Soc. 134, 901 (2012).
http://dx.doi.org/10.1021/ja210936n
15.
15. H. Sirringhaus, Adv. Mater. 21, 3859 (2009).
http://dx.doi.org/10.1002/adma.200901136
16.
16. W.-Y. Wong and C.-L. Ho, J. Mater. Chem. 19, 4457 (2009).
http://dx.doi.org/10.1039/b819943d
17.
17. W.-Y. Wong and C.-L. Ho, Coord. Chem. Rev. 253, 1709 (2009).
http://dx.doi.org/10.1016/j.ccr.2009.01.013
18.
18. Y. Chi and P. T. Chou, Chem. Soc. Rev. 39, 638 (2010).
http://dx.doi.org/10.1039/b916237b
19.
19. M. S. Lowry and S. Bernhard, Chem. Eur. J. 12, 7970 (2006).
http://dx.doi.org/10.1002/chem.200600618
20.
20. W.-Y. Wong, G. J. Zhou, X. M. Yu, H. S. Kwok, and Z. Lin, Adv. Funct. Mater. 17, 315 (2007).
http://dx.doi.org/10.1002/adfm.200600359
21.
21. Y. Zhou, S.-T. Han, Z.-X. Xu, and V. A. L. Roy, Adv. Mater. 24, 1247 (2012).
http://dx.doi.org/10.1002/adma.201104375
22.
22. T.-H. Kwon, Y. H. Oh, I.-S. Shin, and J.-I. Hong, Adv. Funct. Mater. 19, 711 (2009).
http://dx.doi.org/10.1002/adfm.200801231
23.
23. M.-Y. Yuen, V. A. L. Roy, W. Lu, S. C. F. Kui, G. S. M. Tong, M.-H. So, S. S.-Y. Chui, M. Muccini, J. Q. Ning, S. J. Xu, and C.-M. Che, Angew. Chem. Int. Ed. 47, 9895 (2008).
http://dx.doi.org/10.1002/anie.200802981
24.
24. P. Stallinga, H. L. Gomes, F. Biscarini, M. Murgia, and D. M. J. Leeuw, J. Appl. Phys. 96, 5277 (2004).
http://dx.doi.org/10.1063/1.1789279
25.
25. V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J. A. Rogers, and M. E. Gershenson, Phys. Rev. Lett. 93, 086602 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.086602
26.
26. H.-C. Su, F.-C. Fang, T.-Y. Hwu, H.-H. Hsieh, H.-F. Chen, G.-H. Lee, S.-M. Peng, K.-T. Wong, and C.-C. Wu, Adv. Funct. Mater. 17, 1019 (2007).
http://dx.doi.org/10.1002/adfm.200600372
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/8/10.1063/1.4792842
Loading
/content/aip/journal/apl/102/8/10.1063/1.4792842
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/102/8/10.1063/1.4792842
2013-02-25
2014-10-23

Abstract

High performance organic light-emitting electrochemical transistor (OLECT) based on a phosphorescent heteroleptic charged iridium(III) complex has been developed with low-cost solution processing technique. The new OLECT showed good ambipolar behavior with balanced hole and electron mobilities of 0.20 cm2 V–1 s–1 and 0.22 cm2 V–1 s–1, respectively. Furthermore, light emission has been observed from the OLECT device and modulated by the gate. All these results suggest that charged iridium(III) complexes could be a promising candidate for single-component multifunctional organic light-emitting field-effect transistor.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/8/1.4792842.html;jsessionid=8fusc34o0uskr.x-aip-live-02?itemId=/content/aip/journal/apl/102/8/10.1063/1.4792842&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Ambipolar organic light-emitting electrochemical transistor based on a heteroleptic charged iridium(III) complex
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/8/10.1063/1.4792842
10.1063/1.4792842
SEARCH_EXPAND_ITEM