1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Disorder-tuned charge transport in organic semiconductors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/8/10.1063/1.4793399
1.
1. A. P. Kulkarni, C. J. Tonzola, A. Babel, and S. A. Jenekhe, Chem. Mater. 16, 4556 (2004).
http://dx.doi.org/10.1021/cm049473l
2.
2. H. Sirringhaus, Adv. Mater. 17, 2411 (2005).
http://dx.doi.org/10.1002/adma.200501152
3.
3. P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, and D. E. Markov, Adv. Mater. 19, 1551 (2007).
http://dx.doi.org/10.1002/adma.200601093
4.
4. P. W. Anderson, Phys. Rev. 109, 1492 (1958).
http://dx.doi.org/10.1103/PhysRev.109.1492
5.
5. N. Mott, J. Phys. C 20, 3075 (1987).
http://dx.doi.org/10.1088/0022-3719/20/21/008
6.
6. H. Bässler, Phys. Status Solidi B 175, 15 (1993).
http://dx.doi.org/10.1002/pssb.2221750102
7.
7. W. F. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P. A. Bobbert, P. W. M. Blom, D. M. de Leeuw, and M. A. J. Michels, Phys. Rev. Lett. 94, 206601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.206601
8.
8. I. N. Hulea, H. B. Brom, A. J. Houtepen, D. Vanmaekelbergh, J. J. Kelly, and E. A. Meulenkamp, Phys. Rev. Lett. 93, 166601 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.166601
9.
9. E. J. Meijer, M. Matters, P. T. Herwig, D. M. de Leeuw, and T. M. Klapwijk, Appl. Phys. Lett. 76, 3433 (2000).
http://dx.doi.org/10.1063/1.126669
10.
10. V. Podzorov, E. Menard, J. A. Rogers, and M. E. Gershenson, Phys. Rev. Lett. 95, 226601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.226601
11.
11. V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J. A. Rogers, and M. E. Gershenson, Phys. Rev. Lett. 93, 086602 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.086602
12.
12. K. Hannewald, V. M. Stojanović, J. M. T. Schellekens, P. A. Bobbert, G. Kresse, and J. Hafner, Phys. Rev. B 69, 075211 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.075211
13.
13. Y. C. Cheng, R. J. Silbey, D. A. da Silva Filho, J. P. Calbert, J. Cornil, and J. L. Brédas, J. Chem. Phys. 118, 3764 (2003).
http://dx.doi.org/10.1063/1.1539090
14.
14. A. Troisi and G. Orlandi, Phys. Rev. Lett. 96, 086601 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.086601
15.
15. G. Nan, X. Yang, L. Wang, Z. Shuai, and Y. Zhao, Phys. Rev. B 79, 115203 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.115203
16.
16. T. Sakanoue and H. Sirringhaus, Nature Mater. 9, 736 (2010).
http://dx.doi.org/10.1038/nmat2825
17.
17. H. Bässler, P. M. Borsenberger, and R. J. Perry, J. Polym. Sci., Part B: Polym. Phys. 32, 1677 (1994).
http://dx.doi.org/10.1002/polb.1994.090320912
18.
18. A. Miller and E. Abrahams, Phys. Rev. 120, 745 (1960).
http://dx.doi.org/10.1103/PhysRev.120.745
19.
19. D. Poplavskyy and J. Nelson, J. Appl. Phys. 93, 341 (2003).
http://dx.doi.org/10.1063/1.1525866
20.
20. H. C. F. Martens, P. W. M. Blom, and H. F. M. Schoo, Phys. Rev. B 61, 7489 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.7489
21.
21. I. I. Fishchuk, A. K. Kadashchuk, J. Genoe, M. Ullah, H. Sitter, T. B. Singh, N. S. Sariciftci, and H. Bässler, Phys. Rev. B 81, 045202 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.045202
22.
22. S. Kim, J. Yeo, C. Im, and D. Kim, J. Korean Phys. Soc. 60, 1897 (2012).
http://dx.doi.org/10.3938/jkps.60.1897
23.
23. P. M. Borsenberger, L. Pautmeier, R. Richert, and H. Bässler, J. Chem. Phys. 94, 8276 (1991).
http://dx.doi.org/10.1063/1.460112
24.
24. D. Hertel, H. Bässler, U. Scherf, and H. H. Hörhold, J. Chem. Phys. 110, 9214 (1999).
http://dx.doi.org/10.1063/1.478844
25.
25.See supplementary material at http://dx.doi.org/10.1063/1.4793399 for mathematical parameterizations and derivation. [Supplementary Material]
26.
26. S. Fratini and S. Ciuchi, Phys. Rev. Lett. 103, 266601 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.266601
27.
27. F. Ortmann and S. Roche, Phys. Rev. B 84, 180302R (2011).
http://dx.doi.org/10.1103/PhysRevB.84.180302
28.
28. W. Warta, R. Stehle, and N. Karl, Appl. Phys. A 36, 163 (1985).
http://dx.doi.org/10.1007/BF00624938
29.
29. G. Malloci, G. Cappellini, G. Mulas, and A. Mattoni, Chem. Phys. 384, 19 (2011).
http://dx.doi.org/10.1016/j.chemphys.2011.04.013
30.
30. F. Ortmann, F. Bechstedt, and K. Hannewald, Phys. Status Solidi B 248, 511 (2011).
http://dx.doi.org/10.1002/pssb.201046278
31.
31. N. Karl, K. H. Kraft, J. Marktanner, M. Munch, F. Schatz, R. Stehle, and H. M. Uhde, J. Vac. Sci. Technol. A 17, 2318 (1999).
http://dx.doi.org/10.1116/1.581767
32.
32. J. Nožár, S. Nešpůrek, and J. Šebera, J. Mol. Model. 18, 623 (2012).
http://dx.doi.org/10.1007/s00894-011-1056-x
33.
33. A. J. Mozer, N. S. Sariciftci, A. Pivrikas, R. Österbacka, G. Juška, L. Brassat, and H. Bässler, Phys. Rev. B 71, 035214 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.035214
34.
34. J. L. Brédas, D. Beljonne, V. Coropceanu, and J. Cornil, Chem. Rev. 104, 4971 (2004).
http://dx.doi.org/10.1021/cr040084k
35.
35. P. P. Boix, G. Garcia-Belmonte, U. Muñecas, M. Neophytou, C. Waldauf, and R. Pacios, Appl. Phys. Lett. 95, 233302 (2009).
http://dx.doi.org/10.1063/1.3270105
36.
36. N. I. Craciun, J. Wildeman, and P. W. M. Blom, Phys. Rev. Lett. 100, 056601 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.056601
37.
37. J. Zhou, Y. C. Zhou, J. M. Zhao, C. Q. Wu, X. M. Ding, and X. Y. Hou, Phys. Rev. B 75, 153201 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.153201
38.
38. F. Xu and D. Yan, Appl. Phys. Lett. 99, 113303 (2011).
http://dx.doi.org/10.1063/1.3639273
39.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/8/10.1063/1.4793399
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Disorder dependence of the reduced mobility, (in the unit of ), at various charge densities, p, for a vanishing electric field. The symbols are the numerical results from master equation calculation. The lines are fits using the parameterization in Ref. 7 . The inset shows the reduced disorder range corresponding to a typical temperature range from 167 K to 333 K according to Eq. (1) .

Image of FIG. 2.

Click to view

FIG. 2.

Calculated disorder and charge density dependences of the exponent α obtained from the power law fit over thetypical range from 167 K to 333 K to the numerical results in Fig. 1 (symbols). The lines are the fits using the parameterization given in the supplementary material. 25

Image of FIG. 3.

Click to view

FIG. 3.

Temperature dependence of charge mobilities of a number of organic semiconductors. Symbols are the consensus data extracted from TOF images (see Table I for references). The lines are the fits using the parameterization provided in the supplementary material. 25

Image of FIG. 4.

Click to view

FIG. 4.

Schematic illustration of the low-field drift motion of an energetic trap, flat landscape, and barrier. The drift motion is only encouraged when the energetic hopping is uphill, according to Eq. (2) .

Tables

Generic image for table

Click to view

Table I.

The fitted mobility, polaron binding energy, width of Gaussian DOS, and intrinsic charge density obtained from the non-Arrhenius ( ) and present fit to TOF data for a number of typical organic semiconductors.

Loading

Article metrics loading...

/content/aip/journal/apl/102/8/10.1063/1.4793399
2013-03-01
2014-04-16

Abstract

We propose that the polaron transport in organic semiconductors is remarkably tuned by the fluctuation of polarization energy. The tuning effect of energetic fluctuation not only causes a continuous transition from non-Arrhenius to Arrhenius temperature activated charge transport with increasing moderate disorder strengths but also results in a band-like conduction in the low disorder regime which benefits from the enhanced mobilities in shallow trap states. As a result, a unified description of polaron transport is obtained for a set of typical organic semiconductors.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/8/1.4793399.html;jsessionid=ooyv5e52w26u.x-aip-live-03?itemId=/content/aip/journal/apl/102/8/10.1063/1.4793399&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Disorder-tuned charge transport in organic semiconductors
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/8/10.1063/1.4793399
10.1063/1.4793399
SEARCH_EXPAND_ITEM