1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Charge modulation infrared spectroscopy of rubrene single-crystal field-effect transistors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/9/10.1063/1.4794055
1.
1. M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd ed. (Oxford University Press, New York, 1999).
2.
2. S. Ciuchi and S. Fratini, Phys. Rev. B 79, 035113 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.035113
3.
3. J. Takeya, M. Yamagishi, Y. Tominari, R. Hirahara, Y. Nakazawa, T. Nishikawa, T. Kawase, T. Shimoda, and S. Ogawa, Appl. Phys. Lett. 90, 102120 (2007).
http://dx.doi.org/10.1063/1.2711393
4.
4. H. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai, and T. Hasegawa, Nature 475, 364 (2011).
http://dx.doi.org/10.1038/nature10313
5.
5. T. Uemura, Y. Hirose, M. Uno, K. Takimiya, and J. Takeya, Appl. Phys. Express 2, 111501 (2009).
http://dx.doi.org/10.1143/APEX.2.111501
6.
6. M. J. Kang, I. Doi, H. Mori, E. Miyazaki, K. Takimiya, M. Ikeda, and H. Kuwabara, Adv. Mater. 23, 1222 (2011).
http://dx.doi.org/10.1002/adma.201001283
7.
7. D. A. da Silva Filho, E.-G. Kim, and J.-L. Brédas, Adv. Mater. 17, 1072 (2005).
http://dx.doi.org/10.1002/adma.200401866
8.
8. V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, Science 303, 1644 (2004).
http://dx.doi.org/10.1126/science.1094196
9.
9. J. Takeya, J. Kato, K. Hara, M. Yamagishi, R. Hirahara, K. Yamada, Y. Nakazawa, S. Ikehata, K. Tsukagoshi, Y. Aoyagi, T. Takenobu, and Y. Iwasa, Phys. Rev. Lett. 98, 196804 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.196804
10.
10. J. Takeya, K. Tsukagoshi, Y. Aoyagi, T. Takenobu, and Y. Iwasa, Jpn. J. Appl. Phys., Part 2 44, L1393 (2005).
http://dx.doi.org/10.1143/JJAP.44.L1393
11.
11. V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J. A. Rogers, and M. E. Gershenson, Phys. Rev. Lett. 93, 086602 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.086602
12.
12. V. Podzorov, E. Menard, J. A. Rogers, and M. E. Gershenson, Phys. Rev. Lett. 95, 226601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.226601
13.
13. M. Fischer, M. Dressel, B. Gompf, A. K. Tripathi, and J. Pflaum, Appl. Phys. Lett. 89, 182103 (2006).
http://dx.doi.org/10.1063/1.2370743
14.
14. Z. Q. Li, V. Podzorov, N. Sai, M. C. Martin, M. E. Gershenson, M. Di Ventra, and D. N. Basov, Phys. Rev. Lett. 99, 016403 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.016403
15.
15. T. Hasegawa and J. Takeya, Sci. Technol. Adv. Mater. 10, 024314 (2009).
http://dx.doi.org/10.1088/1468-6996/10/2/024314
16.
16. I. W. Boyd, Appl. Phys. Lett. 51, 418 (1987).
http://dx.doi.org/10.1063/1.98408
17.
17. M. Tinkham, Phys. Rev. 104, 845 (1956).
http://dx.doi.org/10.1103/PhysRev.104.845
18.
18. E. Hendry, M. Koeberg, J. Pijipers, and M. Bonn, Phys. Rev. B 75, 233202 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.233202
19.
19. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley Intersciences, New York, 2007).
20.
20. Y. Nakayama, Y. Uragami, S. Machida, K. R. Koswattage, D. Yoshimura, H. Setoyama, T. Okajima, K. Mase, and H. Ishii, Appl. Phys. Express 5, 111601 (2012).
http://dx.doi.org/10.1143/APEX.5.111601
21.
21. N. V. Smith, Phys. Rev. B 64, 155106 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.155106
22.
22. D. G. Cooke, A. N. MacDonald, A. Hryciw, J. Wang, Q. Li, A. Meldrum, and F. A. Hegmann, Phys. Rev. B 73, 193311 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.193311
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/9/10.1063/1.4794055
Loading
/content/aip/journal/apl/102/9/10.1063/1.4794055
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/102/9/10.1063/1.4794055
2013-03-04
2014-10-21

Abstract

Polarized absorption spectra of hole carriers in rubrene single crystal field-effect transistors were measured in the infrared region (725–8000 cm−1) by charge modulation spectroscopy. The absorptions, including the superimposed oscillatory components due to multiple reflections within thin crystals, monotonically increased with decreasing frequency. The spectra and their polarization dependences were well reproduced by the analysis based on the Drude model, in which the absorptions due to holes in rubrene and electrons in the gate electrodes (silicon), and multiple reflections were fully considered. The results support the band transport of hole carriers in rubrene.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/9/1.4794055.html;jsessionid=4nbq6j04fh2k2.x-aip-live-02?itemId=/content/aip/journal/apl/102/9/10.1063/1.4794055&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Charge modulation infrared spectroscopy of rubrene single-crystal field-effect transistors
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/9/10.1063/1.4794055
10.1063/1.4794055
SEARCH_EXPAND_ITEM