1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Interfacial design for reducing charge recombination in photovoltaics
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/9/10.1063/1.4794983
1.
1. C. W. Schlenker and M. E. Thompson, in Topics in Current Chemistry (Springer, Berlin, 2011), pp. 138.
2.
2. M. D. Perez, C. Borek, S. R. Forrest, and M. E. Thompson, J. Am. Chem. Soc. 131(26 ), 92819286 (2009).
http://dx.doi.org/10.1021/ja9007722
3.
3. W. Mou, S. Ohmura, S. Hattori, K. Nomura, F. Shimojo, and A. Nakano, J. Chem. Phys. 136(18 ), 184705 (2012).
http://dx.doi.org/10.1063/1.4712616
4.
4. W. Mou, S. Ohmura, F. Shimojo, and A. Nakano, Appl. Phys. Lett. 100(20 ), 203306 (2012).
http://dx.doi.org/10.1063/1.4719206
5.
5. Y. P. Yi, V. Coropceanu, and J. L. Bredas, J. Am. Chem. Soc. 131(43 ), 1577715783 (2009).
http://dx.doi.org/10.1021/ja905975w
6.
6. J. M. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, J. Comput. Chem. 25(9 ), 11571174 (2004).
http://dx.doi.org/10.1002/jcc.20035
7.
7. A. Nakano, R. K. Kalia, and P. Vashishta, J. Non-Cryst. Solids 171(2 ), 157163 (1994).
http://dx.doi.org/10.1016/0022-3093(94)90351-4
8.
8. L. Muccioli, G. D'Avino, and C. Zannoni, Adv. Mater. 23(39 ), 45324536 (2011).
http://dx.doi.org/10.1002/adma.201101652
9.
9. Y. Tawada, T. Tsuneda, S. Yanagisawa, T. Yanai, and K. Hirao, J. Chem. Phys. 120(18 ), 84258433 (2004).
http://dx.doi.org/10.1063/1.1688752
10.
10. E. L. Shirley and S. G. Louie, Phys. Rev. Lett. 71(1 ), 133136 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.133
11.
11. N. L. Doltsinis and D. Marx, Phys. Rev. Lett. 88(16 ), 166402 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.166402
12.
12. C. F. Craig, W. R. Duncan, and O. V. Prezhdo, Phys. Rev. Lett. 95(16 ), 163001 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.163001
13.
13. E. Tapavicza, I. Tavernelli, and U. Rothlisberger, Phys. Rev. Lett. 98(2 ), 023001 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.023001
14.
14. C. P. Hu, H. Hirai, and O. Sugino, J. Chem. Phys. 127(6 ), 064103 (2007).
http://dx.doi.org/10.1063/1.2755665
15.
15. S. Ohmura, S. Koga, I. Akai, F. Shimojo, R. K. Kalia, A. Nakano, and P. Vashishta, Appl. Phys. Lett. 98(11 ), 113302 (2011).
http://dx.doi.org/10.1063/1.3565962
16.
16. S. Meng and E. Kaxiras, J. Chem. Phys. 129(5 ), 054110 (2008).
http://dx.doi.org/10.1063/1.2960628
17.
17. X. Zhang, Z. Li, and G. Lu, Phys. Rev. B 84(23 ), 235208 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.235208
18.
18. C. Lv, X. J. Wang, G. Agalya, M. Koyama, M. Kubo, and A. Miyamoto, Appl. Surf. Sci. 244(1–4 ), 541545 (2005).
http://dx.doi.org/10.1016/j.apsusc.2004.09.159
19.
19. M. E. Casida, in Recent Advances in Density Functional Methods (Part I), edited by D. P. Chong (World Scientific, Singapore, 1995), pp. 155192.
20.
20. J. C. Tully, J. Chem. Phys. 93(2 ), 10611071 (1990).
http://dx.doi.org/10.1063/1.459170
21.
21. F. Shimojo, S. Ohmura, W. Mou, R. K. Kalia, A. Nakano, and P. Vashishta, Comput. Phys. Commun. 184(1 ), 18 (2013).
http://dx.doi.org/10.1016/j.cpc.2012.08.001
22.
22. L. W. Wang, Energy Environ. Sci. 2(9 ), 944955 (2009).
http://dx.doi.org/10.1039/b904805g
23.
23. Y. Fu, Y. H. Zhou, H. B. Su, F. Y. C. Boey, and H. Agren, J. Phys. Chem. C 114(9 ), 37433747 (2010).
http://dx.doi.org/10.1021/jp9082486
24.
24. N. C. Giebink, G. P. Wiederrecht, M. R. Wasielewski, and S. R. Forrest, Phys. Rev. B 82(15 ), 155305 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.155305
25.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/9/10.1063/1.4794983
Loading
/content/aip/journal/apl/102/9/10.1063/1.4794983
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/102/9/10.1063/1.4794983
2013-03-08
2014-09-30

Abstract

Key to high power conversion efficiency of organic solar cells is to minimize charge recombination (CR) at electron donor/acceptor interfaces. Here, nonadiabatic quantum molecular dynamics simulation shows how the interfacial structure can be controlled by molecular design at acene/C60 interfaces to suppress CR. Orders-of-magnitude reduction of the CR rate is achieved through drastic modification of interfacial structure by attaching phenyl groups to tetracene. This finding confirms a molecular design principle for efficient organic photovoltaics underlying a recent experimental study.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/9/1.4794983.html;jsessionid=3bkw25v970dj3.x-aip-live-03?itemId=/content/aip/journal/apl/102/9/10.1063/1.4794983&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Interfacial design for reducing charge recombination in photovoltaics
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/9/10.1063/1.4794983
10.1063/1.4794983
SEARCH_EXPAND_ITEM