1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Organic transistor and inverter based on assembly of organic nanowires achieved by optimizing surface morphology
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/9/10.1063/1.4795150
1.
1. G. Gelinck, P. Heremans, K. Nomoto, and T. D. Anthopoulos, Adv. Mater. 22, 3778 (2010).
http://dx.doi.org/10.1002/adma.200903559
2.
2. T. Lei and J. Pei, J. Mater. Chem. 22, 785 (2012).
http://dx.doi.org/10.1039/c1jm14599a
3.
3. H. Yu, D. Liao, M. B. Johnston, and B. Li, ACS Nano 5, 2020 (2011).
http://dx.doi.org/10.1021/nn1034185
4.
4. A. N. Aleshin, Adv. Mater. 18, 17 (2006).
http://dx.doi.org/10.1002/adma.200500928
5.
5. Q. Tang, L. Li, Y. Song, Y. Liu, H. Li, W. Xu, Y. Liu, W. Hu, and D. Zhu, Adv. Mater. 19, 2624 (2007).
http://dx.doi.org/10.1002/adma.200700208
6.
6. Z. Hu, B. Muls, L. Gence, D. A. Serban, J. Hofkens, S. Melinte, B. Nysten, S. D. Champagne, and A. M. Jonas, Nano Lett. 7, 3639 (2007).
http://dx.doi.org/10.1021/nl071869j
7.
7. S. Ju, J. Li, J. Liu, P.-C. Chen, Y. Ha, F. Ishikawa, H. Chang, C. Zhou, A. Facchetti, D. B. Janes, and T. J. Marks, Nano Lett. 8, 997 (2008).
http://dx.doi.org/10.1021/nl072538+
8.
8. A. Al-Mahboob, J. T. Sadowski, Y. Fujikawa, K. Nakajima, and T. Sakurai, Phys. Rev. B 77, 035426 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.035426
9.
9. C. Wang, H. Dong, W. Hu, Y. Liu, and D. Zhu, Chem. Rev. 112, 2208 (2012).
http://dx.doi.org/10.1021/cr100380z
10.
10. H. Klauk, U. Zschieschang, J. Pflaum, and M. Halik, Nature 445, 745 (2007).
http://dx.doi.org/10.1038/nature05533
11.
11. H. Klauk, M. Halik, U. Zschieschang, F. Eder, D. Rohde, G. Schmid, and C. Dehm, IEEE Trans. Electron Devices 52, 618 (2005).
http://dx.doi.org/10.1109/TED.2005.844739
12.
12. F. J. M. Hoeben, P. Jonkheijm, E. W. Meijer, and A. P. H. J. Schenning, Chem. Rev. 105, 1491 (2005).
http://dx.doi.org/10.1021/cr030070z
13.
13. Y. Che, A. Datar, K. Balakrishnan, and L. Zang, J. Am. Chem. Soc. 129, 7234 (2007).
http://dx.doi.org/10.1021/ja071903w
14.
14. Q. Tang, H. Li, M. He, W. Hu, C. Liu, K. Chen, C. Wang, Y. Liu, and D. Zhu, Adv. Mater. 18, 65 (2006).
http://dx.doi.org/10.1002/adma.200501654
15.
15. W. Y. Tong, A. B. Djurisic, M. H. Xie, A. C. M. Ng, K. Y. Cheung, W. K. Chan, Y. H. Leung, H. W. Lin, and S. Gwo, J. Phys. Chem. B 110, 17406 (2006).
http://dx.doi.org/10.1021/jp062951q
16.
16. C. Shen and A. Kahn, J. Appl. Phys. 90, 4549 (2001).
http://dx.doi.org/10.1063/1.1406967
17.
17. R. Agrawal, P. Kumar, S. Ghosh, and A. K. Mahapatro, Appl. Phys. Lett. 93, 073311 (2008).
http://dx.doi.org/10.1063/1.2974084
18.
18. K. C. Smith and A. S. Sedra, Microelectronics Circuits, 5th ed. (Oxford, New York, 2004), p. 952.
19.
19. P. Kumar, A. Sharma, S. R. Chaudhuri, and S. Ghosh, Appl. Phys. Lett. 99, 173304 (2011).
http://dx.doi.org/10.1063/1.3656245
20.
20. A. Sharma, P. Kumar, B. Singh, S. R. Chaudhuri, and S. Ghosh, Appl. Phys. Lett. 99, 023301 (2011).
http://dx.doi.org/10.1063/1.3607955
21.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/9/10.1063/1.4795150
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

AFM topographic images (1 μm×1 μm) of ultrathin CuPc films of thicknesses (a),(d) 0.2 nm, (b),(e) 0.5 nm and (c),(f) 1 nm deposited on SiO2/Si substrate at growth temperature (a)–(c) 40 °C and (e)–(g) 120 °C with constant deposition rate of 0.1 Å/s.

Image of FIG. 2.

Click to view

FIG. 2.

Molecular structure and AFM topographic images (1 μm×1 μm) of 100 nm thick films of (a) F16CuPc and (b) CuPc grown at different substrate temperatures with a fixed deposition rate of 0.1 Å/s. The AFM image (0.35 μm × 0.35 μm) at the center shows the single CuPc nanowire. STScurrent-voltage characteristics of (c) F16CuPc and (d) CuPc thin films.

Image of FIG. 3.

Click to view

FIG. 3.

|IDS |1/2-VGS characteristics at VDS  = −1 V of (a),(b) p- type CuPc and (c),(d) n-type F16CuPc based OTFTs in which organic layer grown at substrate temperature (a),(c) 40 °C and (b),(d) 100 °C. Arrow indicates the threshold voltage (Vth ). Vth reduced from −6.1 V to −1.1 V in CuPc based OTFT and from 13.5 V to 1.2 V in F16CuP based OTFT, when devices were fabricated on nanowire assembly. Insets show the transfer characteristics of OTFTs in which the leakage current is reduced and ON-OFF ratio is increased by two orders of magnitude, when devices were fabricated on nanowire assembly. The schematic representation of charge carrier transport between source and drain in OTFTs based on (a) CuPc and (c) F16CuPc with TG  = 40 °C shows large number of barriers exist in the current conduction path whereas in anisotropic thin films, achieved at higher growth temperature (∼100 °C) provide very few grain boundary barriers in the current conduction path.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Circuit diagram and (b) Schematic representation of organic inverter comprised of p-channel CuPc and n-channel F16CuPc. Inverter was fabricated on thin films with assemblies of nanowires. (c) Voltage transfer characteristics (Vin Vout ) and (d) gain of the organic inverter at different supply voltages of 20 V, 30 V, 40 V, and 50 V. (e) After one month, marginal change has been observed in the voltage transfer characteristics of the same inverter.

Loading

Article metrics loading...

/content/aip/journal/apl/102/9/10.1063/1.4795150
2013-03-08
2014-04-19

Abstract

We have demonstrated that assemblies of organic nanowires can be grown on Si and SiO2 substrates by controlling growth parameters. At higher growth temperatures, anisotropic growth dominates over isotropic growth, resulting in surface morphologies consisting of nanowire-like elongated grains. These elongated grains provide better π-π stacking, leading to higher carrier mobility and better performance of organic transistors. Using this approach, we have demonstrated organic inverter using complementary semiconducting materials, p-type copper phthalocyanine and n-type copper hexadecafluoro phthalocyanine. These results indicate that small organic molecule-based nanowires are promising candidates for future organic based microelectronics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/9/1.4795150.html;jsessionid=eu7tfiphhr9t.x-aip-live-06?itemId=/content/aip/journal/apl/102/9/10.1063/1.4795150&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Organic transistor and inverter based on assembly of organic nanowires achieved by optimizing surface morphology
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/9/10.1063/1.4795150
10.1063/1.4795150
SEARCH_EXPAND_ITEM