NOTICE: Scitation Maintenance Sunday, March 1, 2015.

Scitation users may experience brief connectivity issues on Sunday, March 1, 2015 between 12:00 AM and 7:00 AM EST due to planned network maintenance.

Thank you for your patience during this process.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Prog. Photovoltaics 21, 1 (2013).
2. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, Nature Commun. 4, 1446 (2013).
3. J. D. Zimmerman, B. E. Lassiter, X. Xiao, K. Sun, A. Dolocan, R. Gearba, D. A. Vanden Bout, K. J. Stevenson, P. Wickrramasinghe, M. E. Thompson, and S. R. Forrest, ACS NanoControl of interface order by inverse quasi-epitaxial growth of squaraine/fullerene thin film photovoltaics” (published online).
4. F. Silvestri, M. D. Irwin, L. Beverina, A. Facchetti, G. A. Pagani, and T. J. Marks, J. Am. Chem. Soc. 130, 17640 (2008).
5. K. H. Lee, P. E. Schwenn, A. R. G. Smith, H. Cavaye, P. E. Shaw, M. James, K. B. Krueger, I. R. Gentle, P. Meredith, and P. L. Burn, Adv. Mater. 23, 766 (2011).
6. B. Walker, C. Kim, and T.-Q. Nguyen, Chem. Mater. 23, 470 (2011).
7. J. C. Conboy, E. J. C. Olson, D. M. Adams, J. Kerimo, A. Zaban, B. A. Gregg, and P. F. Barbara, J. Phys. Chem. B 102, 4516 (1998).
8. S. Miller, G. Fanchini, Y.-Y. Lin, C. Li, C.-W. Chen, W.-F. Su, and M. Chhowalla, J. Mater. Chem. 18, 306 (2008).
9. J. D. Zimmerman, X. Xiao, C. K. Renshaw, S. Wang, V. V. Diev, M. E. Thompson, and S. R. Forrest, Nano Lett. 12, 4366 (2012).
10. M. Hiramoto, M. Suezaki, and M. Yokoyama, Chem. Lett. 19, 327 (1990).
11. A. Yakimov and S. R. Forrest, Appl. Phys. Lett. 80, 1667 (2002).
12. B. P. Rand, P. Peumans, and S. R. Forrest, J. Appl. Phys. 96, 7519 (2004).
13. G. Dennler, H.-J. Prall, R. Koeppe, M. Egginger, R. Autengruber, and N. S. Sariciftci, Appl. Phys. Lett. 89, 073502 (2006).
14. A. G. F. Janssen, T. Riedl, S. Hamwi, H.-H. Johannes, and W. Kowalsky, Appl. Phys. Lett. 91, 073519 (2007).
15. A. Hadipour, B. de Boer, J. Wildeman, F. B. Kooistra, J. C. Hummelen, M. G. R. Turbiez, M. M. Wienk, R. A. J. Janssen, and P. W. M. Blom, Adv. Funct. Mater. 16, 1897 (2006).
16. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, Science 317, 222 (2007).
17. S. K. Hau, H.-L. Yip, K.-S. Chen, J. Zou, and A. K.-Y. Jen, APL Org. Electron. Photon. 3, 277 (2010).
18. X. Guo, F. Liu, B. Meng, Z. Xie, and L. Wang, Org. Electron. 11, 1230 (2010).
19. R. Schueppel, R. Timmreck, N. Allinger, T. Mueller, M. Furno, C. Uhrich, K. Leo, and M. Riede, J. Appl. Phys. 107, 044503 (2010).
20. B. E. Lassiter, J. D. Zimmerman, A. Panda, X. Xiao, and S. R. Forrest, Appl. Phys. Lett. 101, 063303 (2012).
21. K.-A. Kim, S. Y. Park, Y. J. Kim, N. Kim, S. I. Hong, and H. Sasabe, J. Appl. Polym. Sci. 46, 1 (1992).
22. J. Liu, Y. Shi, and Y. Yang, Adv. Funct. Mater. 11, 420 (2001).<420::AID-ADFM420>3.0.CO;2-K
23. T. Ishikawa, M. Nakamura, K. Fujita, and T. Tsutsui, Appl. Phys. Lett. 84, 2424 (2004).
24. S. Y. Wang, L. Hall, V. V. Diev, R. Haiges, G. D. Wei, X. Xiao, P. I. Djurovich, S. R. Forrest, and M. E. Thompson, Chem. Mater. 23, 4789 (2011).
25. S. Sreejith, P. Carol, P. Chithra, and A. Ajayaghosh, J. Mater. Chem. 18, 264 (2008).
26. G. Wei, R. R. Lunt, K. Sun, S. Wang, M. E. Thompson, and S. R. Forrest, Nano Lett. 10, 3555 (2010).
27. T. M. Letcher, U. Domanska, A. Goldon, and E. M. Mwenesongole, South Afr. J. Chem. 50, 51 (1997).
28. P. P. Kulkarni and C. T. Jafvert, Environ. Sci. Technol. 42, 845 (2008).
29. R. S. Ruoff, D. S. Tse, R. Malhotra, and D. C. Lorents, J. Phys. Chem. 97, 3379 (1993).
30. V. Shrotriya, G. Li, Y. Yao, C. W. Chu, and Y. Yang, Appl. Phys. Lett. 88, 073508 (2006).
31. G. Wei, X. Xiao, S. Wang, K. Sun, K. J. Bergemann, M. E. Thompson, and S. R. Forrest, ACS Nano 6, 972 (2012).
32. B. E. Lassiter, G. Wei, S. Wang, J. D. Zimmerman, V. V. Diev, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett. 98, 243307 (2011).
33. C. H. Seaman, Sol. Energy 29, 291 (1982).
34. L. A. A. Pettersson, L. S. Roman, and O. Inganas, J. Appl. Phys. 86, 487 (1999).

Data & Media loading...


Article metrics loading...



We develop a partially solution-processed small molecule tandem organic photovoltaic cell using an organic/inorganic interlayer structure that provides efficient charge recombination while protecting underlying layers from degradation due to attack from solvents applied during the deposition of subsequent sub-cells. Each sub-cell consists of a functionalized squaraine (SQ) blend donor that is cast from solution, followed by evaporation of other functional layers. The first SQ layer is cast from chloroform, while the second is cast from a tetrahydrofuran, thereby minimizing dissolution of the relatively insoluble, underlying fullerene layer that acts to protect the first donor layer. Solvent vapor annealing increases the sub-cell performance while decreasing the damage caused by spin-coating of the second SQ layer, both of which result from increased film crystallinity that reduces the rate of solvent penetration. The tandem cell has a power conversion efficiency of 6.2% ± 0.3% and an open circuit voltage nearly equal to the sum of the constituent sub-cells.


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Tandem organic photovoltaics incorporating two solution-processed small molecule donor layers