1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Tandem organic photovoltaics incorporating two solution-processed small molecule donor layers
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/103/12/10.1063/1.4821112
1.
1. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Prog. Photovoltaics 21, 1 (2013).
http://dx.doi.org/10.1002/pip.2352
2.
2. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, Nature Commun. 4, 1446 (2013).
http://dx.doi.org/10.1038/ncomms2411
3.
3. J. D. Zimmerman, B. E. Lassiter, X. Xiao, K. Sun, A. Dolocan, R. Gearba, D. A. Vanden Bout, K. J. Stevenson, P. Wickrramasinghe, M. E. Thompson, and S. R. Forrest, ACS NanoControl of interface order by inverse quasi-epitaxial growth of squaraine/fullerene thin film photovoltaics” (published online).
http://dx.doi.org/10.1021/nn403897d
4.
4. F. Silvestri, M. D. Irwin, L. Beverina, A. Facchetti, G. A. Pagani, and T. J. Marks, J. Am. Chem. Soc. 130, 17640 (2008).
http://dx.doi.org/10.1021/ja8067879
5.
5. K. H. Lee, P. E. Schwenn, A. R. G. Smith, H. Cavaye, P. E. Shaw, M. James, K. B. Krueger, I. R. Gentle, P. Meredith, and P. L. Burn, Adv. Mater. 23, 766 (2011).
http://dx.doi.org/10.1002/adma.201003545
6.
6. B. Walker, C. Kim, and T.-Q. Nguyen, Chem. Mater. 23, 470 (2011).
http://dx.doi.org/10.1021/cm102189g
7.
7. J. C. Conboy, E. J. C. Olson, D. M. Adams, J. Kerimo, A. Zaban, B. A. Gregg, and P. F. Barbara, J. Phys. Chem. B 102, 4516 (1998).
http://dx.doi.org/10.1021/jp980969y
8.
8. S. Miller, G. Fanchini, Y.-Y. Lin, C. Li, C.-W. Chen, W.-F. Su, and M. Chhowalla, J. Mater. Chem. 18, 306 (2008).
http://dx.doi.org/10.1039/b713926h
9.
9. J. D. Zimmerman, X. Xiao, C. K. Renshaw, S. Wang, V. V. Diev, M. E. Thompson, and S. R. Forrest, Nano Lett. 12, 4366 (2012).
http://dx.doi.org/10.1021/nl302172w
10.
10. M. Hiramoto, M. Suezaki, and M. Yokoyama, Chem. Lett. 19, 327 (1990).
http://dx.doi.org/10.1246/cl.1990.327
11.
11. A. Yakimov and S. R. Forrest, Appl. Phys. Lett. 80, 1667 (2002).
http://dx.doi.org/10.1063/1.1457531
12.
12. B. P. Rand, P. Peumans, and S. R. Forrest, J. Appl. Phys. 96, 7519 (2004).
http://dx.doi.org/10.1063/1.1812589
13.
13. G. Dennler, H.-J. Prall, R. Koeppe, M. Egginger, R. Autengruber, and N. S. Sariciftci, Appl. Phys. Lett. 89, 073502 (2006).
http://dx.doi.org/10.1063/1.2336593
14.
14. A. G. F. Janssen, T. Riedl, S. Hamwi, H.-H. Johannes, and W. Kowalsky, Appl. Phys. Lett. 91, 073519 (2007).
http://dx.doi.org/10.1063/1.2772208
15.
15. A. Hadipour, B. de Boer, J. Wildeman, F. B. Kooistra, J. C. Hummelen, M. G. R. Turbiez, M. M. Wienk, R. A. J. Janssen, and P. W. M. Blom, Adv. Funct. Mater. 16, 1897 (2006).
http://dx.doi.org/10.1002/adfm.200600138
16.
16. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, Science 317, 222 (2007).
http://dx.doi.org/10.1126/science.1141711
17.
17. S. K. Hau, H.-L. Yip, K.-S. Chen, J. Zou, and A. K.-Y. Jen, APL Org. Electron. Photon. 3, 277 (2010).
http://dx.doi.org/10.1063/1.3530431
18.
18. X. Guo, F. Liu, B. Meng, Z. Xie, and L. Wang, Org. Electron. 11, 1230 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.05.004
19.
19. R. Schueppel, R. Timmreck, N. Allinger, T. Mueller, M. Furno, C. Uhrich, K. Leo, and M. Riede, J. Appl. Phys. 107, 044503 (2010).
http://dx.doi.org/10.1063/1.3277051
20.
20. B. E. Lassiter, J. D. Zimmerman, A. Panda, X. Xiao, and S. R. Forrest, Appl. Phys. Lett. 101, 063303 (2012).
http://dx.doi.org/10.1063/1.4742921
21.
21. K.-A. Kim, S. Y. Park, Y. J. Kim, N. Kim, S. I. Hong, and H. Sasabe, J. Appl. Polym. Sci. 46, 1 (1992).
http://dx.doi.org/10.1002/app.1992.070460101
22.
22. J. Liu, Y. Shi, and Y. Yang, Adv. Funct. Mater. 11, 420 (2001).
http://dx.doi.org/10.1002/1616-3028(200112)11:6<420::AID-ADFM420>3.0.CO;2-K
23.
23. T. Ishikawa, M. Nakamura, K. Fujita, and T. Tsutsui, Appl. Phys. Lett. 84, 2424 (2004).
http://dx.doi.org/10.1063/1.1690493
24.
24. S. Y. Wang, L. Hall, V. V. Diev, R. Haiges, G. D. Wei, X. Xiao, P. I. Djurovich, S. R. Forrest, and M. E. Thompson, Chem. Mater. 23, 4789 (2011).
http://dx.doi.org/10.1021/cm2020803
25.
25. S. Sreejith, P. Carol, P. Chithra, and A. Ajayaghosh, J. Mater. Chem. 18, 264 (2008).
http://dx.doi.org/10.1039/b707734c
26.
26. G. Wei, R. R. Lunt, K. Sun, S. Wang, M. E. Thompson, and S. R. Forrest, Nano Lett. 10, 3555 (2010).
http://dx.doi.org/10.1021/nl1018194
27.
27. T. M. Letcher, U. Domanska, A. Goldon, and E. M. Mwenesongole, South Afr. J. Chem. 50, 51 (1997).
28.
28. P. P. Kulkarni and C. T. Jafvert, Environ. Sci. Technol. 42, 845 (2008).
http://dx.doi.org/10.1021/es071062t
29.
29. R. S. Ruoff, D. S. Tse, R. Malhotra, and D. C. Lorents, J. Phys. Chem. 97, 3379 (1993).
http://dx.doi.org/10.1021/j100115a049
30.
30. V. Shrotriya, G. Li, Y. Yao, C. W. Chu, and Y. Yang, Appl. Phys. Lett. 88, 073508 (2006).
http://dx.doi.org/10.1063/1.2174093
31.
31. G. Wei, X. Xiao, S. Wang, K. Sun, K. J. Bergemann, M. E. Thompson, and S. R. Forrest, ACS Nano 6, 972 (2012).
http://dx.doi.org/10.1021/nn204676j
32.
32. B. E. Lassiter, G. Wei, S. Wang, J. D. Zimmerman, V. V. Diev, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett. 98, 243307 (2011).
http://dx.doi.org/10.1063/1.3598426
33.
33. C. H. Seaman, Sol. Energy 29, 291 (1982).
http://dx.doi.org/10.1016/0038-092X(82)90244-4
34.
34. L. A. A. Pettersson, L. S. Roman, and O. Inganas, J. Appl. Phys. 86, 487 (1999).
http://dx.doi.org/10.1063/1.370757
35.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/103/12/10.1063/1.4821112
Loading
/content/aip/journal/apl/103/12/10.1063/1.4821112
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/103/12/10.1063/1.4821112
2013-09-17
2014-07-14

Abstract

We develop a partially solution-processed small molecule tandem organic photovoltaic cell using an organic/inorganic interlayer structure that provides efficient charge recombination while protecting underlying layers from degradation due to attack from solvents applied during the deposition of subsequent sub-cells. Each sub-cell consists of a functionalized squaraine (SQ) blend donor that is cast from solution, followed by evaporation of other functional layers. The first SQ layer is cast from chloroform, while the second is cast from a tetrahydrofuran, thereby minimizing dissolution of the relatively insoluble, underlying fullerene layer that acts to protect the first donor layer. Solvent vapor annealing increases the sub-cell performance while decreasing the damage caused by spin-coating of the second SQ layer, both of which result from increased film crystallinity that reduces the rate of solvent penetration. The tandem cell has a power conversion efficiency of 6.2% ± 0.3% and an open circuit voltage nearly equal to the sum of the constituent sub-cells.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/103/12/1.4821112.html;jsessionid=4smu1kfet1mcc.x-aip-live-03?itemId=/content/aip/journal/apl/103/12/10.1063/1.4821112&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Tandem organic photovoltaics incorporating two solution-processed small molecule donor layers
http://aip.metastore.ingenta.com/content/aip/journal/apl/103/12/10.1063/1.4821112
10.1063/1.4821112
SEARCH_EXPAND_ITEM