1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Active materials by four-dimension printing
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/103/13/10.1063/1.4819837
1.
1. S. Tibbits, Archit. Des. 82, 68 (2012).
http://dx.doi.org/10.1002/ad.1381
2.
2. S. Tibbits and K. Cheung, Assem. Autom. 32, 216225 (2012).
http://dx.doi.org/10.1108/01445151211244348
3.
3. Y. P. Liu, K. Gall, M. L. Dunn, A. R. Greenberg, and J. Diani, Int. J. Plast. 22, 279 (2006).
http://dx.doi.org/10.1016/j.ijplas.2005.03.004
4.
4. T. D. Nguyen, H. J. Qi, F. Castro, and K. N. Long, J. Mech. Phys. Solids. 56, 2792 (2008).
http://dx.doi.org/10.1016/j.jmps.2008.04.007
5.
5. H. J. Qi, T. D. Nguyen, F. Castro, C. M. Yakacki, and R. Shandas, J. Mech. Phys. Solids. 56, 1730 (2008).
http://dx.doi.org/10.1016/j.jmps.2007.12.002
6.
6. V. Srivastava, S. A. Chester, N. M. Ames, and L. Anand, Int. J. Plast. 26, 1138 (2010).
http://dx.doi.org/10.1016/j.ijplas.2010.01.004
7.
7. K. K. Westbrook, P. H. Kao, F. Castro, Y. F. Ding, and H. J. Qi, Mech. Mater. 43, 853 (2011).
http://dx.doi.org/10.1016/j.mechmat.2011.09.004
8.
8. Q. Ge, X. F. Luo, E. D. Rodriguez, X. Zhang, P. T. Mather, M. L. Dunn, and H. J. Qi, J. Mech. Phys. Solids. 60, 67 (2012).
http://dx.doi.org/10.1016/j.jmps.2011.09.011
9.
9. X. F. Luo and P. T. Mather, Macromolecules 42, 7251 (2009).
http://dx.doi.org/10.1021/ma9015888
10.
10. E. D. Rodriguez, C. W. Weed, and P. T. Mather, Macromol. Chem. Phys. 214, 1247 (2013).
http://dx.doi.org/10.1002/macp.201300086
11.
11. J. G. Boyd and D. C. Lagoudas, J. Intell. Mater. Syst. Struct. 5, 333 (1994).
http://dx.doi.org/10.1177/1045389X9400500306
12.
12. L. J. Stiltner, A. M. Elliott, and C. B. Williams, in Solid Freeform Fabrication Symp. Proc., 2011, Vol. 22, p. 583.
13.
13. K. Yu, T. Xie, J. S. Leng, Y. F. Ding, and H. J. Qi, Soft Matter 8, 5687 (2012).
http://dx.doi.org/10.1039/c2sm25292a
14.
14. Z. Y. Guo, X. Q. Peng, and B. Moran, J. Mech. Phys. Solids 54, 1952 (2006).
http://dx.doi.org/10.1016/j.jmps.2006.02.006
15.
15. Z. Y. Guo, X. Q. Peng, and B. Moran, Int. J. Solids Struct. 44, 1949 (2007).
http://dx.doi.org/10.1016/j.ijsolstr.2006.08.018
16.
16. O. Lopez-Pamies and M. I. Idiart, J. Engrg. Math. 68, 57 (2010).
http://dx.doi.org/10.1007/s10665-009-9359-y
17.
17. G. deBotton, I. Hariton, and E. A. Socolsky, J. Mech. Phys. Solids 54, 533 (2006).
http://dx.doi.org/10.1016/j.jmps.2005.10.001
18.
18. Z. Chen, C. Majidi, D. J. Srolovitz, and M. Haataja, Appl. Phys. Lett. 98, 011906 (2011).
http://dx.doi.org/10.1063/1.3530441
19.
19. J. S. Huang, J. Liu, B. Kroll, K. Bertoldi, and D. R. Clarke, Soft Matter 8, 6291 (2012).
http://dx.doi.org/10.1039/c2sm25278c
20.
20. N. Oxman, Virtual Phys. Prototyp. 6, 3 (2011).
http://dx.doi.org/10.1080/17452759.2011.558588
21.
21. M. L. Dunn and K. Maute, Mech. Mater. 41, 1083 (2009).
http://dx.doi.org/10.1016/j.mechmat.2009.06.004
22.
22. M. Howard, J. Pajot, K. Maute, and M. L. Dunn, J. Microelectromech. Syst. 18, 1137 (2009).
http://dx.doi.org/10.1109/JMEMS.2009.2025562
23.
23. J. M. Pajot, K. Maute, Y. H. Zhang, and M. L. Dunn, Int. J. Solids Struct. 43, 1832 (2006).
http://dx.doi.org/10.1016/j.ijsolstr.2005.03.036
24.
24. C. J. Rupp, A. Evgrafov, K. Maute, and M. L. Dunn, J. Intell. Mater. Syst. Struct. 20, 1923 (2009).
http://dx.doi.org/10.1177/1045389X09341200
25.
25. M. L. Dunn, Y. H. Zhang, and V. M. Bright, J. Membr. Sci. 11, 372 (2002).
26.
26. Y. H. Zhang and M. L. Dunn, J. Mech. Phys. Solids 52, 2101 (2004).
http://dx.doi.org/10.1016/j.jmps.2004.02.003
27.
27.See supplementary material at http://dx.doi.org/10.1063/1.4819837 for thermomechanical properties, theories of PAC lamina and detailed layouts of PAC laminates. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/apl/103/13/10.1063/1.4819837
Loading
/content/aip/journal/apl/103/13/10.1063/1.4819837
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/103/13/10.1063/1.4819837
2013-09-23
2014-10-02

Abstract

We advance a paradigm of realized by directly printing glassy shape memory polymer fibers in an elastomeric matrix. We imbue the active composites with intelligence via a programmed lamina and laminate architecture and a subsequent thermomechanical training process. The initial configuration is created by three-dimension (3D) printing, and then the programmed action of the shape memory fibers creates time dependence of the configuration—the four-dimension (4D) aspect. We design and print laminates in thin plate form that can be thermomechanically programmed to assume complex three-dimensional configurations including bent, coiled, and twisted strips, folded shapes, and complex contoured shapes with nonuniform, spatially varying curvature. The original flat plate shape can be recovered by heating the material again. We also show how the printed active composites can be directly integrated with other printed functionalities to create devices; here we demonstrate this by creating a structure that can assemble itself.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/103/13/1.4819837.html;jsessionid=4fb7caahi5b74.x-aip-live-06?itemId=/content/aip/journal/apl/103/13/10.1063/1.4819837&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Active materials by four-dimension printing
http://aip.metastore.ingenta.com/content/aip/journal/apl/103/13/10.1063/1.4819837
10.1063/1.4819837
SEARCH_EXPAND_ITEM