Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. J. Polking, M.-G. Han, A. Yourdkhani, V. Petkov, C. F. Kisielowski, V. V. Volkov, Y. Zhu, G. Caruntu, A. P. Alivisatos, and R. Ramesh, Nature Mater. 11, 700 (2012).
2. S. Valencia, A. Crassous, L. Bocher, V. Garcia, X. Moya, R. O. Cherifi, C. Deranlot, K. Bouzehouane, S. Fusil, A. Zobelli, A. Gloter, N. D. Mathur, A. Gaupp, R. Abrudan, F. Radu, A. Barthélémy, and M. Bibes, Nature Mater. 10, 753 (2011).
3. M. Stengel, D. Vanderbilt, and N. A. Spaldin, Nature Mater. 8, 392 (2009).
4. G. Catalan, A. Lubk, A. H. G. Vlooswijk, E. Snoeck, C. Magen, A. Janssens, G. Rispens, G. Rijnders, D. H. A. Blank, and B. Noheda, Nature Mater. 10, 963 (2011).
5. S. Van Aert, S. Turner, R. Delville, D. Schryvers, G. Van Tendeloo, and E. K. H. Salje, Adv. Mater. 24, 523 (2012).
6. J. Hlinka, P. Ondrejkovic, and P. Marton, Nanotechnology 20, 105709 (2009).
7. L. Goncalves-Ferreira, S. A. T. Redfern, E. Artacho, and E. K. H. Salje, Phys. Rev. Lett. 101, 097602 (2008).
8. A. N. Morozovska, E. A. Eliseev, M. D. Glinchuk, L.-Q. Chen, and V. Gopalan, Phys. Rev. B 85, 094107 (2012).
9. E. K. H. Salje, ChemPhysChem 11, 940 (2010).
10. E. Salje and H. Zhang, Phase Transitions 82, 452 (2009).
11. Y. Kim, M. Alexe, and E. K. H. Salje, Appl. Phys. Lett. 96, 032904 (2010).
12. G. L. Rhun, I. Vrejoiu, L. Pintilie, D. Hesse, M. Alexe, and U. Gösele, Nanotechnology 17, 3154 (2006).
13. T. Varga, A. Kumar, E. Vlahos, S. Denev, M. Park, S. Hong, T. Sanehira, Y. Wang, C. J. Fennie, S. K. Streiffer, X. Ke, P. Schiffer, V. Gopalan, and J. F. Mitchell, Phys. Rev. Lett. 103, 047601 (2009).
14. D. Meier, N. Leo, G. Yuan, T. Lottermoser, M. Fiebig, P. Becker, and L. Bohatý, Phys. Rev. B 82, 155112 (2010).
15. T. Lottermoser, D. Meier, R. V. Pisarev, and M. Fiebig, Phys. Rev. B 80, 100101 (2009).
16. M. H. Frey and D. A. Payne, Phys. Rev. B 54, 3158 (1996).
17.See supplementary material at for experimental details and the description of data analysis. [Supplementary Material]
18. A. Migliori, J. Sarrao, W. M. Visscher, T. Bell, M. Lei, Z. Fisk, and R. Leisure, Physica B 183, 1 (1993).
19. D. J. Safarik, E. K. H. Salje, and J. C. Lashley, Appl. Phys. Lett. 97, 111907 (2010).
20. M. A. Carpenter, E. K. H. Salje, and C. J. Howard, Phys. Rev. B 85, 224430 (2012).
21. R. E. A. McKnight, T. Moxon, A. Buckley, P. A. Taylor, T. W. Darling, and M. A. Carpenter, J. Phys.: Condens. Matter 20, 075229 (2008).
22. R. E. McKnight, M. A. Carpenter, T. W. Darling, A. Buckley, and P. A. Taylor, Am. Mineral. 92, 1665 (2007).
23. E. K. H. Salje, M. A. Carpenter, G. F. Nataf, G. Picht, K. Webber, J. Weerasinghe, S. Lisenkov, and L. Bellaiche, Phys. Rev. B 87, 014106 (2013).
24. E. K. H. Salje, X. Ding, Z. Zhao, T. Lookman, and A. Saxena, Phys. Rev. B 83, 104109 (2011).
25. J. Maynard, Phys. Today 49(1), 26 (1996).
26. E. K. Salje, D. J. Safarik, J. C. Lashley, L. A. Groat, and U. Bismayer, Am. Mineral. 96, 1254 (2011).
27. A. M. Pugachev, V. I. Kovalevskii, N. V. Surovtsev, S. Kojima, S. A. Prosandeev, I. P. Raevski, and S. I. Raevskaya, Phys. Rev. Lett. 108, 247601 (2012).
28. E. Dul'kin, B. Mihailova, G. Catalan, M. Gospodinov, and M. Roth, Phys. Rev. B 82, 180101 (2010).
29. B. Dkhil, P. Gemeiner, A. Al-Barakaty, L. Bellaiche, E. Dul'kin, E. Mojaev, and M. Roth, Phys. Rev. B 80, 064103 (2009).
30. A. M. Bratkovsky, S. C. Marais, V. Heine, and E. K. H. Salje, J. Phys.: Condens. Matter 6, 3679 (1994).
31. A. Planes, P. Lloveras, T. Castán, A. Saxena, and M. Porta, Continuum Mech. Thermodyn. 24, 619 (2012).
32. W. Ma and L. E. Cross, Appl. Phys. Lett. 88, 232902 (2006);
32. S. Conti, S. Müller, A. Poliakovsky, E. K. H. Salje, J. Phys.: Condens. Matter 23, 142203 (2011).
33. X. Ren, Nature Mater. 3, 91 (2004).

Data & Media loading...


Article metrics loading...



An experimental method, Resonant Piezoelectric Spectroscopy (RPS), is introduced for the detection of polar precursor effects in ferroelectric and multiferroic materials. RPS is based on the excitation of elastic waves through the piezoelectric effect in a sample. As the intensity of these waves is significantly amplified through mechanical resonances, RPS is very sensitive to the development of polar nanostructures. Using RPS, we identify polar nanostructures in BaTiO as a precursor in the cubic phase. Results are compatible with polar tweed structures which persist up to 613 K. This temperature is much higher than previously reported.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd