Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/103/14/10.1063/1.4823576
1.
1. M. J. Polking, M.-G. Han, A. Yourdkhani, V. Petkov, C. F. Kisielowski, V. V. Volkov, Y. Zhu, G. Caruntu, A. P. Alivisatos, and R. Ramesh, Nature Mater. 11, 700 (2012).
http://dx.doi.org/10.1038/nmat3371
2.
2. S. Valencia, A. Crassous, L. Bocher, V. Garcia, X. Moya, R. O. Cherifi, C. Deranlot, K. Bouzehouane, S. Fusil, A. Zobelli, A. Gloter, N. D. Mathur, A. Gaupp, R. Abrudan, F. Radu, A. Barthélémy, and M. Bibes, Nature Mater. 10, 753 (2011).
http://dx.doi.org/10.1038/nmat3098
3.
3. M. Stengel, D. Vanderbilt, and N. A. Spaldin, Nature Mater. 8, 392 (2009).
http://dx.doi.org/10.1038/nmat2429
4.
4. G. Catalan, A. Lubk, A. H. G. Vlooswijk, E. Snoeck, C. Magen, A. Janssens, G. Rispens, G. Rijnders, D. H. A. Blank, and B. Noheda, Nature Mater. 10, 963 (2011).
http://dx.doi.org/10.1038/nmat3141
5.
5. S. Van Aert, S. Turner, R. Delville, D. Schryvers, G. Van Tendeloo, and E. K. H. Salje, Adv. Mater. 24, 523 (2012).
http://dx.doi.org/10.1002/adma.201103717
6.
6. J. Hlinka, P. Ondrejkovic, and P. Marton, Nanotechnology 20, 105709 (2009).
http://dx.doi.org/10.1088/0957-4484/20/10/105709
7.
7. L. Goncalves-Ferreira, S. A. T. Redfern, E. Artacho, and E. K. H. Salje, Phys. Rev. Lett. 101, 097602 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.097602
8.
8. A. N. Morozovska, E. A. Eliseev, M. D. Glinchuk, L.-Q. Chen, and V. Gopalan, Phys. Rev. B 85, 094107 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.094107
9.
9. E. K. H. Salje, ChemPhysChem 11, 940 (2010).
http://dx.doi.org/10.1002/cphc.200900943
10.
10. E. Salje and H. Zhang, Phase Transitions 82, 452 (2009).
http://dx.doi.org/10.1080/01411590902936138
11.
11. Y. Kim, M. Alexe, and E. K. H. Salje, Appl. Phys. Lett. 96, 032904 (2010).
http://dx.doi.org/10.1063/1.3292587
12.
12. G. L. Rhun, I. Vrejoiu, L. Pintilie, D. Hesse, M. Alexe, and U. Gösele, Nanotechnology 17, 3154 (2006).
http://dx.doi.org/10.1088/0957-4484/17/13/013
13.
13. T. Varga, A. Kumar, E. Vlahos, S. Denev, M. Park, S. Hong, T. Sanehira, Y. Wang, C. J. Fennie, S. K. Streiffer, X. Ke, P. Schiffer, V. Gopalan, and J. F. Mitchell, Phys. Rev. Lett. 103, 047601 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.047601
14.
14. D. Meier, N. Leo, G. Yuan, T. Lottermoser, M. Fiebig, P. Becker, and L. Bohatý, Phys. Rev. B 82, 155112 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.155112
15.
15. T. Lottermoser, D. Meier, R. V. Pisarev, and M. Fiebig, Phys. Rev. B 80, 100101 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.100101
16.
16. M. H. Frey and D. A. Payne, Phys. Rev. B 54, 3158 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.3158
17.
17.See supplementary material at http://dx.doi.org/10.1063/1.4823576 for experimental details and the description of data analysis. [Supplementary Material]
18.
18. A. Migliori, J. Sarrao, W. M. Visscher, T. Bell, M. Lei, Z. Fisk, and R. Leisure, Physica B 183, 1 (1993).
http://dx.doi.org/10.1016/0921-4526(93)90048-B
19.
19. D. J. Safarik, E. K. H. Salje, and J. C. Lashley, Appl. Phys. Lett. 97, 111907 (2010).
http://dx.doi.org/10.1063/1.3489376
20.
20. M. A. Carpenter, E. K. H. Salje, and C. J. Howard, Phys. Rev. B 85, 224430 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.224430
21.
21. R. E. A. McKnight, T. Moxon, A. Buckley, P. A. Taylor, T. W. Darling, and M. A. Carpenter, J. Phys.: Condens. Matter 20, 075229 (2008).
http://dx.doi.org/10.1088/0953-8984/20/7/075229
22.
22. R. E. McKnight, M. A. Carpenter, T. W. Darling, A. Buckley, and P. A. Taylor, Am. Mineral. 92, 1665 (2007).
http://dx.doi.org/10.2138/am.2007.2568
23.
23. E. K. H. Salje, M. A. Carpenter, G. F. Nataf, G. Picht, K. Webber, J. Weerasinghe, S. Lisenkov, and L. Bellaiche, Phys. Rev. B 87, 014106 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.014106
24.
24. E. K. H. Salje, X. Ding, Z. Zhao, T. Lookman, and A. Saxena, Phys. Rev. B 83, 104109 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.104109
25.
25. J. Maynard, Phys. Today 49(1), 26 (1996).
http://dx.doi.org/10.1063/1.881483
26.
26. E. K. Salje, D. J. Safarik, J. C. Lashley, L. A. Groat, and U. Bismayer, Am. Mineral. 96, 1254 (2011).
http://dx.doi.org/10.2138/am.2011.3747
27.
27. A. M. Pugachev, V. I. Kovalevskii, N. V. Surovtsev, S. Kojima, S. A. Prosandeev, I. P. Raevski, and S. I. Raevskaya, Phys. Rev. Lett. 108, 247601 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.247601
28.
28. E. Dul'kin, B. Mihailova, G. Catalan, M. Gospodinov, and M. Roth, Phys. Rev. B 82, 180101 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.180101
29.
29. B. Dkhil, P. Gemeiner, A. Al-Barakaty, L. Bellaiche, E. Dul'kin, E. Mojaev, and M. Roth, Phys. Rev. B 80, 064103 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.064103
30.
30. A. M. Bratkovsky, S. C. Marais, V. Heine, and E. K. H. Salje, J. Phys.: Condens. Matter 6, 3679 (1994).
http://dx.doi.org/10.1088/0953-8984/6/20/008
31.
31. A. Planes, P. Lloveras, T. Castán, A. Saxena, and M. Porta, Continuum Mech. Thermodyn. 24, 619 (2012).
http://dx.doi.org/10.1007/s00161-011-0203-z
32.
32. W. Ma and L. E. Cross, Appl. Phys. Lett. 88, 232902 (2006);
http://dx.doi.org/10.1063/1.2211309
32. S. Conti, S. Müller, A. Poliakovsky, E. K. H. Salje, J. Phys.: Condens. Matter 23, 142203 (2011).
http://dx.doi.org/10.1088/0953-8984/23/14/142203
33.
33. X. Ren, Nature Mater. 3, 91 (2004).
http://dx.doi.org/10.1038/nmat1051
http://aip.metastore.ingenta.com/content/aip/journal/apl/103/14/10.1063/1.4823576
Loading
/content/aip/journal/apl/103/14/10.1063/1.4823576
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/103/14/10.1063/1.4823576
2013-09-30
2016-12-05

Abstract

An experimental method, Resonant Piezoelectric Spectroscopy (RPS), is introduced for the detection of polar precursor effects in ferroelectric and multiferroic materials. RPS is based on the excitation of elastic waves through the piezoelectric effect in a sample. As the intensity of these waves is significantly amplified through mechanical resonances, RPS is very sensitive to the development of polar nanostructures. Using RPS, we identify polar nanostructures in BaTiO as a precursor in the cubic phase. Results are compatible with polar tweed structures which persist up to 613 K. This temperature is much higher than previously reported.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/103/14/1.4823576.html;jsessionid=pG34SOt6Rf6XaGaJshJx2pVB.x-aip-live-02?itemId=/content/aip/journal/apl/103/14/10.1063/1.4823576&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/103/14/10.1063/1.4823576&pageURL=http://scitation.aip.org/content/aip/journal/apl/103/14/10.1063/1.4823576'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,