Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/103/15/10.1063/1.4824420
1.
1. W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).
http://dx.doi.org/10.1063/1.1736034
2.
2. M. B. Smith and J. Michl, Chem. Rev. 110, 6891 (2010).
http://dx.doi.org/10.1021/cr1002613
3.
3. B. Ehrler, M. W. B. Wilson, A. Rao, R. H. Friend, and N. C. Greenham, Nano Lett. 12, 1053 (2012).
http://dx.doi.org/10.1021/nl204297u
4.
4. B. Ehrler, K. P. Musselman, M. L. Böhm, R. H. Friend, and N. C. Greenham, Appl. Phys. Lett. 101, 153507 (2012).
http://dx.doi.org/10.1063/1.4757612
5.
5. M. C. Hanna and A. J. Nozik, J. Appl. Phys. 100, 74510 (2006).
http://dx.doi.org/10.1063/1.2356795
6.
6. M. W. B. Wilson, A. Rao, J. Clark, R. S. S. Kumar, D. Brida, G. Cerullo, and R. H. Friend, J. Am. Chem. Soc. 133, 11830 (2011).
http://dx.doi.org/10.1021/ja201688h
7.
7. P. M. Zimmerman, Z. Zhang, and C. B. Musgrave, Nat. Chem. 2, 648 (2010).
http://dx.doi.org/10.1038/nchem.694
8.
8. A. Rao, M. W. B. Wilson, J. M. Hodgkiss, S. Albert-Seifried, H. Bässler, and R. H. Friend, J. Am. Chem. Soc. 132, 12698 (2010).
http://dx.doi.org/10.1021/ja1042462
9.
9. T. Hasegawa and J. Takeya, Sci. Technol. Adv. Mater. 10, 24314 (2009).
http://dx.doi.org/10.1088/1468-6996/10/2/024314
10.
10. D. N. Congreve, J. Lee, N. J. Thompson, E. Hontz, S. R. Yost, P. D. Reusswig, M. E. Bahlke, S. Reineke, T. Voorhis, and M. A. Baldo, Science 340, 334 (2013).
http://dx.doi.org/10.1126/science.1232994
11.
11. P. D. Reusswig, D. N. Congreve, N. J. Thompson, and M. A. Baldo, Appl. Phys. Lett. 101, 113304 (2012).
http://dx.doi.org/10.1063/1.4752445
12.
12. S. Yoo, B. Domercq, and B. Kippelen, Appl. Phys. Lett. 85, 5427 (2004).
http://dx.doi.org/10.1063/1.1829777
13.
13. S. Yoo, W. J. Potscavage, Jr., B. Domercq, S.-H. Han, T.-D. Li, S. C. Jones, R. Szoszkiewicz, D. Levi, E. Riedo, S. R. Marder, and B. Kippelen, Solid-State Electron. 51, 1367 (2007).
http://dx.doi.org/10.1016/j.sse.2007.07.038
14.
14.See supplementary material at http://dx.doi.org/10.1063/1.4824420 for detailed information about the optical constants and modeling and further device characteristics. [Supplementary Material]
15.
15. Z. Knittl, Optics of Thin Films (Wiley, London, 1976).
16.
16. L. A. A. Pettersson, L. S. Roman, and O. Inganäs, J. Appl. Phys. 86, 487 (1999).
http://dx.doi.org/10.1063/1.370757
17.
17. H. Wang, H.-Y. Wang, B.-R. Gao, L. Wang, Z.-Y. Yang, X.-B. Du, Q.-D. Chen, J.-F. Song, and H.-B. Sun, Nanoscale 3, 2280 (2011).
http://dx.doi.org/10.1039/c0nr01002b
18.
18. B. Ehrler, B. J. Walker, M. L. Böhm, M. W. B. B. Wilson, Y. Vaynzof, R. H. Friend, and N. C. Greenham, Nat. Commun. 3, 1019 (2012).
http://dx.doi.org/10.1038/ncomms2012
19.
19. B. Xu and S. Holdcroft, Adv. Mater. 6, 325 (1994).
http://dx.doi.org/10.1002/adma.19940060417
20.
20. P. Peumans, A. Yakimov, and S. R. Forrest, J. Appl. Phys. 93, 3693 (2003).
http://dx.doi.org/10.1063/1.1534621
21.
21. J. B. Aladekomo, S. Arnold, and M. Pope, Phys. Status Solidi B 80, 333 (1977).
http://dx.doi.org/10.1002/pssb.2220800139
22.
22. J. Burgos, M. Pope, C. E. Swenberg, and R. R. Alfano, Phys. Status Solidi B 83, 249 (1977).
http://dx.doi.org/10.1002/pssb.2220830127
23.
23. W. J. Potscavage, Jr., S. Yoo, B. Domercq, and B. Kippelen, Appl. Phys. Lett. 90, 253511 (2007).
http://dx.doi.org/10.1063/1.2751108
24.
24. R. Ruiz, A. C. Mayer, G. G. Malliaras, B. Nickel, G. Scoles, A. Kazimirov, H. Kim, R. L. Headrick, and Z. Islam, Appl. Phys. Lett. 85, 4926 (2004).
http://dx.doi.org/10.1063/1.1826229
25.
25. P. J. Jadhav, P. R. Brown, N. Thompson, B. Wunsch, A. Mohanty, S. R. Yost, E. Hontz, T. Van Voorhis, M. G. Bawendi, V. Bulovic, and M. A. Baldo, Adv. Mater. 24, 6169 (2012).
http://dx.doi.org/10.1002/adma.201202397
26.
26. M. Dressel, B. Gompf, D. Faltermeier, A. K. Tripathi, J. Pflaum, and M. Schubert, Opt. Express 16, 19770 (2008).
http://dx.doi.org/10.1364/OE.16.019770
27.
27. L. Sebastian, G. Weiser, and H. Bässler, Chem. Phys. 61, 125 (1981).
http://dx.doi.org/10.1016/0301-0104(81)85055-0
http://aip.metastore.ingenta.com/content/aip/journal/apl/103/15/10.1063/1.4824420
Loading
/content/aip/journal/apl/103/15/10.1063/1.4824420
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/103/15/10.1063/1.4824420
2013-10-08
2016-09-28

Abstract

Singlet fission sensitized photovoltaics have the potential to surpass the Shockley-Queisser limit for a single-junction structure. We investigate the dynamics of triplet excitons resulting from singlet fission in pentacene and their ionization at a C heterojunction. We model the generation and diffusion of excitons to predict the spectral response. We find the triplet diffusion length in polycrystalline pentacene to be 40 nm. Poly(3-hexylthiophene) between the electrode and pentacene works both to confine triplet excitons and also to transfer photogenerated singlet excitons into pentacene with 30% efficiency. The lower bound for the singlet fission quantum efficiency in pentacene is 180 ± 15%.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/103/15/1.4824420.html;jsessionid=ac9rLBctcMOWTk5fshZKcHf2.x-aip-live-03?itemId=/content/aip/journal/apl/103/15/10.1063/1.4824420&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/103/15/10.1063/1.4824420&pageURL=http://scitation.aip.org/content/aip/journal/apl/103/15/10.1063/1.4824420'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,