Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/103/17/10.1063/1.4822175
1.
1. Dhananjay and C.-W. Chu, Appl. Phys. Lett. 91, 132111 (2007).
http://dx.doi.org/10.1063/1.2789788
2.
2. J. H. Noh, S. Y. Ryu, S. J. Jo, C. S. Kim, S. W. Sohn, P. D. Rack, D. J. Kim, and H. K. Baik, IEEE Electron Device Lett. 31, 567 (2010).
http://dx.doi.org/10.1109/LED.2010.2046133
3.
3. K. Ebata, S. Tomai, Y. Tsuruma, T. Iitsuka, S. Matsuzaki, and K. Yano, Appl. Phys. Express 5, 011102 (2012).
http://dx.doi.org/10.1143/APEX.5.011102
4.
4. G. Gonçalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, Electrochem. Solid-State Lett. 13, H20 (2010).
http://dx.doi.org/10.1149/1.3257613
5.
5. T. Miyasako, M. Senoo, and E. Tokumitsu, Appl. Phys. Lett. 86, 162902 (2005).
http://dx.doi.org/10.1063/1.1905800
6.
6. S. Y. Park, K. H. Ji, H. Y. Jung, J.-I. Kim, R. Choi, K. S. Son, M. K. Ryu, S. Lee, and J. K. Jeong, Appl. Phys. Lett. 100, 162108 (2012).
http://dx.doi.org/10.1063/1.4704926
7.
7. N. L. Dehuff, E. S. Kettenring, D. Hong, H. Q. Chiang, J. F. Wager, R. L. Hoffman, C. H. Park, and D. A. Keszler, J. Appl. Phys. 97, 064505 (2005).
http://dx.doi.org/10.1063/1.1862767
8.
8. P. Barquinha, A. Pimentel, A. Marques, L. Pereira, R. Martins, and E. Fortunato, J. Non-Cryst. Solids 352, 1749 (2006).
http://dx.doi.org/10.1016/j.jnoncrysol.2006.01.067
9.
9. S. Aikawa, P. Darmawan, K. Yanagisawa, T. Nabatame, Y. Abe, and K. Tsukagoshi, Appl. Phys. Lett. 102, 102101 (2013).
http://dx.doi.org/10.1063/1.4794903
10.
10. K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science 300, 1269 (2003).
http://dx.doi.org/10.1126/science.1083212
11.
11. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004).
http://dx.doi.org/10.1038/nature03090
12.
12. H.-W. Park, B.-K. Kim, J.-S. Park, and K.-B. Chung, Appl. Phys. Lett. 102, 102102 (2013).
http://dx.doi.org/10.1063/1.4794941
13.
13. K. Nomura, T. Kamiya, H. Ohta, T. Uruga, M. Hirano, and H. Hosono, Phys. Rev. B 75, 035212 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.035212
14.
14. T. Kamiya, K. Nomura, and H. Hosono, J. Disp. Technol. 5, 273 (2009).
http://dx.doi.org/10.1109/JDT.2009.2021582
15.
15. T. Kamiya, K. Nomura, and H. Hosono, Sci. Technol. Adv. Mater. 11, 044305 (2010).
http://dx.doi.org/10.1088/1468-6996/11/4/044305
16.
16. J. S. Park, W.-J. Maeng, H.-S. Kim, and J.-S. Park, Thin Solid Films 520, 1679 (2012).
http://dx.doi.org/10.1016/j.tsf.2011.07.018
17.
17. Y. Shimura, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, Thin Solid Films 516, 5899 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.10.051
18.
18. J.-S. Park, J. K. Jeong, Y.-G. Mo, H. D. Kim, and S.-I. Kim, Appl. Phys. Lett. 90, 262106 (2007).
http://dx.doi.org/10.1063/1.2753107
19.
19. M. Nakata, K. Takechi, K. Azuma, E. Tokumitsu, H. Yamaguchi, and S. Kaneko, Appl. Phys. Express 2, 021102 (2009).
http://dx.doi.org/10.1143/APEX.2.021102
20.
20. H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, Appl. Phys. Lett. 89, 112123 (2006).
http://dx.doi.org/10.1063/1.2353811
21.
21. H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, Thin Solid Films 516, 1516 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.03.161
22.
22. P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes, Appl. Phys. Lett. 82, 1117 (2003).
http://dx.doi.org/10.1063/1.1553997
23.
23. H. Hosono, J. Non-Cryst. Solids 352, 851 (2006).
http://dx.doi.org/10.1016/j.jnoncrysol.2006.01.073
24.
24. K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, Jpn. J. Appl. Phys. 45, 4303 (2006).
http://dx.doi.org/10.1143/JJAP.45.4303
25.
25. E. Fortunato, P. Barquinha, and R. Martins, Adv. Mater. 24, 2945 (2012).
http://dx.doi.org/10.1002/adma.201103228
26.
26. Y.-R. Luo, Comprehensive Handbook of Chemical Bond Energies (CRC Press, New York, 2007), p. 667.
27.
27. Y.-R. Luo, Comprehensive Handbook of Chemical Bond Energies (CRC Press, New York, 2007), p. 713.
28.
28. Y.-R. Luo, Comprehensive Handbook of Chemical Bond Energies (CRC Press, New York, 2007), p. 455.
29.
29. Y.-R. Luo, Comprehensive Handbook of Chemical Bond Energies (CRC Press, New York, 2007), p1041.
30.
30. I. Kang, C. H. Park, E. Chong, and S. Y. Lee, Curr. Appl. Phys. 12, S12 (2012).
http://dx.doi.org/10.1016/j.cap.2012.05.044
31.
31. C.-J. Kim, S. Kim, J.-H. Lee, J.-S. Park, S. Kim, J. Park, E. Lee, J. Lee, Y. Park, J. H. Kim, S. T. Shin, and U. I. Chung, Appl. Phys. Lett. 95, 252103 (2009).
http://dx.doi.org/10.1063/1.3275801
32.
32. K. Ghaffarzadeh, A. Nathan, J. Robertson, S. Kim, S. Jeon, C. Kim, U. I. Chung, and J.-H. Lee, Appl. Phys. Lett. 97, 143510 (2010).
http://dx.doi.org/10.1063/1.3496029
33.
33. K. Ghaffarzadeh, A. Nathan, J. Robertson, S. Kim, S. Jeon, C. Kim, U. I. Chung, and J.-H. Lee, Appl. Phys. Lett. 97, 113504 (2010).
http://dx.doi.org/10.1063/1.3480547
34.
34. S. Lee and A. Nathan, Appl. Phys. Lett. 101, 113502 (2012).
http://dx.doi.org/10.1063/1.4751861
35.
35. K. Nomura, T. Kamiya, H. Ohta, K. Ueda, M. Hirano, and H. Hosono, Appl. Phys. Lett. 85, 1993 (2004).
http://dx.doi.org/10.1063/1.1788897
36.
36. T. Kamiya, K. Nomura, and H. Hosono, J. Disp. Technol. 5, 462 (2009).
http://dx.doi.org/10.1109/JDT.2009.2022064
37.
37. D. E. Proffit, D. B. Buchholz, R. P. H. Chang, M. J. Bedzyk, T. O. Mason, and Q. Ma, J. Appl. Phys. 106, 113524 (2009).
http://dx.doi.org/10.1063/1.3259385
http://aip.metastore.ingenta.com/content/aip/journal/apl/103/17/10.1063/1.4822175
Loading
/content/aip/journal/apl/103/17/10.1063/1.4822175
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/103/17/10.1063/1.4822175
2013-10-23
2016-10-01

Abstract

Amorphous metal oxide thin-film transistors (TFTs) are fabricated using InO-based semiconductors doped with TiO, WO, or SiO. Even at low-dopant densities, the electrical properties of the film strongly depend on the dopant used. We found that this dependence could be reasonably explained by differences in the bond-dissociation energy of the dopants. By incorporating a dopant with a higher bond-dissociation energy, the film became less sensitive to the partial pressure of oxygen used during sputtering and remained electrically stable upon thermal annealing. Thus, choosing a dopant with an appropriate bond-dissociation energy is important when fabricating stable metal-oxide TFTs for flat-panel displays.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/103/17/1.4822175.html;jsessionid=iLw1giA3iSangxQih34bvH6x.x-aip-live-06?itemId=/content/aip/journal/apl/103/17/10.1063/1.4822175&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/103/17/10.1063/1.4822175&pageURL=http://scitation.aip.org/content/aip/journal/apl/103/17/10.1063/1.4822175'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,