1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
High power terahertz quantum cascade lasers with symmetric wafer bonded active regions
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/103/17/10.1063/1.4826943
1.
1. J. Darmo, V. Tamosiunas, G. Fasching, J. Kröll, K. Unterrainer, M. Beck, M. Giovannini, J. Faist, C. Kremser, and P. Debbage, Opt. Express 12, 1879 (2004).
http://dx.doi.org/10.1364/OPEX.12.001879
2.
2. M. Tonouchi, Nat. Photonics 1, 97 (2007).
http://dx.doi.org/10.1038/nphoton.2007.3
3.
3. C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, Appl. Phys. Lett. 91, 131122 (2007).
http://dx.doi.org/10.1063/1.2793177
4.
4. C. W. I. Chan, Q. Hu, and J. L. Reno, Appl. Phys. Lett. 101, 151108 (2012).
http://dx.doi.org/10.1063/1.4759043
5.
5. B. Williams, S. Kumar, Q. Hu, and J. Reno, Electron. Lett. 42, 89 (2006).
http://dx.doi.org/10.1049/el:20063921
6.
6. S. Fathololoumi, E. Dupont, C. Chan, Z. Wasilewski, S. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, Opt. Express 20, 3866 (2012).
http://dx.doi.org/10.1364/OE.20.003866
7.
7. S. Kohen, B. S. Williams, and Q. Hu, J. Appl. Phys. 97, 053106 (2005).
http://dx.doi.org/10.1063/1.1855394
8.
8. M. Brandstetter, M. Krall, C. Deutsch, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, Appl. Phys. Lett. 102, 231121 (2013).
http://dx.doi.org/10.1063/1.4811124
9.
9. A. J. L. Adam, I. Kašalynas, J. N. Hovenier, T. O. Klaassen, J. R. Gao, E. E. Orlova, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, Appl. Phys. Lett. 88, 151105 (2006).
http://dx.doi.org/10.1063/1.2194889
10.
10. M. Amanti, M. Fischer, C. Walther, G. Scalari, and J. Faist, Electron. Lett. 43, 573 (2007).
http://dx.doi.org/10.1049/el:20070450
11.
11. W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin et al., Appl. Phys. Lett. 93, 183508 (2008).
http://dx.doi.org/10.1063/1.3013819
12.
12. M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, Nat. Photonics 3, 586 (2009).
http://dx.doi.org/10.1038/nphoton.2009.168
13.
13. S. Kumar, B. S. Williams, Q. Qin, A. W. Lee, Q. Hu, and J. L. Reno, Opt. Express 15, 113 (2007).
http://dx.doi.org/10.1364/OE.15.000113
14.
14. E. Mujagic, C. Deutsch, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, K. Unterrainer, and G. Strasser, Appl. Phys. Lett. 95, 011120 (2009).
http://dx.doi.org/10.1063/1.3176966
15.
15. L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, Nat. Photonics 3, 46 (2009).
http://dx.doi.org/10.1038/nphoton.2008.248
16.
16. Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, Nature 457, 174178 (2009).
http://dx.doi.org/10.1038/nature07636
17.
17. M. Brandstetter, C. Deutsch, A. Benz, G. D. Cole, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, Opt. Express 20, 23832 (2012).
http://dx.doi.org/10.1364/OE.20.023832
18.
18. R. Koehler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, Nature 417, 156 (2002).
http://dx.doi.org/10.1038/417156a
19.
19. S. Kumar, IEEE J. Sel. Top. Quantum Electron. 17, 38 (2011).
http://dx.doi.org/10.1109/JSTQE.2010.2049735
20.
20. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, Appl. Opt. 22, 1099 (1983).
http://dx.doi.org/10.1364/AO.22.001099
21.
21. C. Deutsch, H. Detz, M. Krall, M. Brandstetter, T. Zederbauer, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, Appl. Phys. Lett. 102, 201102 (2013).
http://dx.doi.org/10.1063/1.4805040
http://aip.metastore.ingenta.com/content/aip/journal/apl/103/17/10.1063/1.4826943
Loading
/content/aip/journal/apl/103/17/10.1063/1.4826943
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/103/17/10.1063/1.4826943
2013-10-23
2014-07-23

Abstract

We increased the active region/waveguide thickness of terahertz quantum cascade lasers with semi-insulating surface plasmon waveguides by stacking two symmetric active regions on top of each other, via a direct wafer bonding technique. In this way, we enhance the generated optical power in the cavity and the mode confinement. We achieved 470 mW peak output power in pulsed mode from a single facet at a heat sink temperature of 5 K and a maximum operation temperature of 122 K. Furthermore, the devices show a broad band emission spectrum over a range of 420 GHz, centered around 3.9 THz.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/103/17/1.4826943.html;jsessionid=3h057j4fvok0h.x-aip-live-06?itemId=/content/aip/journal/apl/103/17/10.1063/1.4826943&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: High power terahertz quantum cascade lasers with symmetric wafer bonded active regions
http://aip.metastore.ingenta.com/content/aip/journal/apl/103/17/10.1063/1.4826943
10.1063/1.4826943
SEARCH_EXPAND_ITEM