Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. E. Abbe, J. R. Microsc. Soc. 1(3), 388 (1881).
2. E. Abbe, J. R. Microsc. Soc. 2(3), 300 (1882).
3. T. Latychevskaia and H.-W. Fink, Opt. Express 21(6), 7726 (2013).
4. D. Gabor, Nature 161(4098), 777 (1948).
5. D. Gabor, Proc. R. Soc. London, Ser. A 197(1051), 454 (1949).
6. T. Latychevskaia and H.-W. Fink, Opt. Express 17(13), 10697 (2009).
7. T. Latychevskaia, J.-N. Longchamp, and H.-W. Fink, Opt. Express 20(27), 28871 (2012).
8. T. Latychevskaia, P. Formanek, C. T. Koch, and A. Lubk, Ultramicroscopy 110(5), 472 (2010).
9. T. Latychevskaia and H.-W. Fink, Phys. Rev. Lett. 98(23), 233901 (2007).
10. J. W. Miao, P. Charalambous, J. Kirz, and D. Sayre, Nature 400(6742), 342 (1999).
11. M. M. Seibert, T. Ekeberg, F. R. N. C. Maia, M. Svenda, J. Andreasson, O. Jonsson, D. Odic, B. Iwan, A. Rocker, D. Westphal, M. Hantke, D. P. DePonte, A. Barty, J. Schulz, L. Gumprecht, N. Coppola, A. Aquila, M. Liang, T. A. White, A. Martin, C. Caleman, S. Stern, C. Abergel, V. Seltzer, J.-M. Claverie, C. Bostedt, J. D. Bozek, S. Boutet, A. A. Miahnahri, M. Messerschmidt, J. Krzywinski, G. Williams, K. O. Hodgson, M. J. Bogan, C. Y. Hampton, R. G. Sierra, D. Starodub, I. Andersson, S. Bajt, M. Barthelmess, J. C. H. Spence, P. Fromme, U. Weierstall, R. Kirian, M. Hunter, R. B. Doak, S. Marchesini, S. P. Hau-Riege, M. Frank, R. L. Shoeman, L. Lomb, S. W. Epp, R. Hartmann, D. Rolles, A. Rudenko, C. Schmidt, L. Foucar, N. Kimmel, P. Holl, B. Rudek, B. Erk, A. Homke, C. Reich, D. Pietschner, G. Weidenspointner, L. Struder, G. Hauser, H. Gorke, J. Ullrich, I. Schlichting, S. Herrmann, G. Schaller, F. Schopper, H. Soltau, K.-U. Kuhnel, R. Andritschke, C.-D. Schroter, F. Krasniqi, M. Bott, S. Schorb, D. Rupp, M. Adolph, T. Gorkhover, H. Hirsemann, G. Potdevin, H. Graafsma, B. Nilsson, H. N. Chapman, and J. Hajdu, Nature 470(7332), 78 (2011).
12. J. C. H. Spence, U. Weierstall, and H. N. Chapman, Rep. Prog. Phys. 75(10), 102601 (2012).
13. D. Sayre, Acta Crystallogr. 5(6), 843 (1952).
14. J. R. Fienup, Appl. Opt. 21(15), 2758 (1982).
15. S. Marchesini, H. He, H. N. Chapman, S. P. Hau-Riege, A. Noy, M. R. Howells, U. Weierstall, and J. C. H. Spence, Phys. Rev. B 68(14), 140101R (2003).
16. T. Latychevskaia, J.-N. Longchamp, and H.-W. Fink, Opt. Express 19(20), 19330 (2011).
17. J. R. Fienup, Appl. Opt. 52(1), 45 (2013).
18. H. Nyquist, Trans. AIEE 47, 617 (1928).
19. V. A. Kotelnikov, “On the transmission capacity of “ether” and wire in electrocommunications,” Proc. 1st All-Union Conf. Technological Reconstruction of the Commun. Sector and Low-Current Eng., Moscow (1933) pages 1–19 (in Russian).
20. C. E. Shannon, “Communication in the Presence of Noise” in Proceedings Institute of Radio Engineers (IEEE, 1949) vol. 37, no. 1, pp. 1021.
21. P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and G. Coppola, Appl. Phys. Lett. 85(14), 2709 (2004).
22. P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, Opt. Lett. 29(8), 854 (2004).
23. G. J. Williams, H. M. Quiney, B. B. Dhal, C. Q. Tran, K. A. Nugent, A. G. Peele, D. Paterson, and M. D. de Jonge, Phys. Rev. Lett. 97(2), 025506 (2006).
24. G. W. Stroke, Appl. Phys. Lett. 6(10), 201 (1965).

Data & Media loading...


Article metrics loading...



Conventional microscopic records represent intensity distributions whereby local sample information is mapped onto local information at the detector. In coherent microscopy, the superposition principle of waves holds; field amplitudes are added, not intensities. This non-local representation is spread out in space and interference information combined with wave continuity allows extrapolation beyond the actual detected data. Established resolution criteria are thus circumvented and hidden object details can retrospectively be recovered from just a fraction of an interference pattern.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd