Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. G. R. Fleming and M. A. Ratner, Phys. Today 61(7), 28 (2008).
2. Handbook of Transparent Conductors, edited by D. S. Ginley, H. Hosono, and D. C. Paine (Springer, Heidelberg, 2011).
3. A. Walsh, J. L. F. Da Silva, S.-H. Wei, C. Körber, A. Klein, L. F. J. Piper, A. DeMasi, K. E. Smith, G. Panaccione, P. Torelli, D. J. Payne, A. Bourlange, and R. G. Egdell, Phys. Rev. Lett. 100, 167402 (2008).
4. P. D. C. King, T. D. Veal, F. Fuchs, Ch. Y. Wang, D. J. Payne, A. Bourlange, H. Zhang, G. R. Bell, V. Cimalla, O. Ambacher, R. G. Egdell, F. Bechstedt, and C. F. McConville, Phys. Rev. B 79, 205211 (2009).
5. S. Lany, A. Zakutayev, T. O. Mason, J. F. Wager, K. R. Poeppelmeier, J. D. Perkins, J. J. Berry, D. S. Ginley, and A. Zunger, Phys. Rev. Lett. 108, 016802 (2012).
6. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).
7. S. Lany and A. Zunger, Phys. Rev. Lett. 98, 045501 (2007).
8. D. C. Look, K. D. Leedy, L. Vines, B. G. Svensson, A. Zubiaga, F. Tuomisto, D. R. Doutt, and L. J. Brillson, Phys. Rev. B 84, 115202 (2011).
9. D. O. Demchenko, B. Earles, H. Y. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, and H. Morkoç, Phys. Rev. B 84, 075201 (2011).
10. C. G. van de Walle and J. Neugebauer, J. Appl. Phys. 95, 3851 (2004).
11. F. A. Kröger and H. J. Vink, Physica 20, 950 (1954).
12. H. Ryokena, I. Sakaguchia, N. Ohashia, T. Sekiguchia, S. Hishitaa, and H. Haneda, J. Mater. Res. 20, 2866 (2005).
13. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Nature Mater. 4, 42 (2005).
14. B. K. Meyer, J. Sann, D. M. Hofmann, C. Neumann, and A. Zeuner, Semicond. Sci. Technol. 20, S62 (2005).
15. L. J. Brillson, Y. Dong, F. Tuomisto, B. G. Svensson, A. Yu. Kuznetsov, D. Doutt, H. L. Mosbacker, G. Cantwell, J. Zhang, J. J. Song, Z.-Q. Fang, and D. C. Look, Physica Status Solidi C 9, 1566 (2012).
16. K. Biswas and S. Lany, Phys. Rev. B 80, 115206 (2009).
17. L. Y. Lim, S. Lany, Y. J. Chang, E. Rotenberg, A. Zunger, and M. F. Toney, Phys. Rev. B 86, 235113 (2012).
18. S. Lany, Phys. Rev. B 78, 245207 (2008).
19. S. Lany and A. Zunger, Phys. Rev. B 78, 235104 (2008).
20. R. Wang and A. W. Sleight, Chem. Mater. 8, 433 (1996).
21. G. B. González, T. O. Mason, J. P. Quintana, O. Warschkow, D. E. Ellis, J.-H. Hwang, J. P. Hodges, and J. D. Jorgensen, J. Appl. Phys. 96, 3912 (2004).
22.See supplementary material at for more information on theoretical and experimental details, for comparison of the present theoretical results with those published earlier, and for more discussion of combinatorial experiments. [Supplementary Material]
23. F. J. Manjón, M. Mollar, M. A. Hernández-Fenollosa, B. Marí, R. Lauck, and M. Cardona, Solid State Commun. 128, 35 (2003).
24. J. Osorio-Guillén, S. Lany, S. V. Barabash, and A. Zunger, Phys. Rev. Lett. 96, 107203 (2006).
25. T. Y. Tan, H. M. You, and U. M. Gösele, Appl. Phys. A 56, 249 (1993).
26. A. Zakutayev, F. J. Luciano, V. P. Bollinger, A. K. Sigdel, P. F. Ndione, J. D. Perkins, J. J. Berry, P. A. Parilla, and D. S. Ginley, Rev. Sci. Instrum. 84, 053905 (2013).
27. A. Zakutayev, T. R. Paudel, P. F. Ndione, J. D. Perkins, S. Lany, A. Zunger, and D. S. Ginley, Phys. Rev. B 85, 085204 (2012).
28. A. Zakutayev, J. D. Perkins, P. A. Parilla, N. E. Widjonarko, A. K. Sigdel, J. J. Berry, and D. S. Ginley, MRS Commun. 1, 23 (2011).
29. R. C. Scott, K. D. Leedy, B. Bayraktaroglu, D. C. Look, and Y.-H. Zhang, J. Cryst. Growth 324, 110 (2011).
30. S.-M. Park, T. Ikegami, and K. Ebihara, Thin Solid Films 513, 90 (2006).
31. K. Ellmer, A. Klein, and B. Rech, Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells (Springer, Heidelberg, 2008).

Data & Media loading...


Article metrics loading...



Non-equilibrium state defines physical properties of materials in many technologies, including architectural, metallic, and semiconducting amorphous glasses. In contrast, crystalline electronic and energy materials, such as transparent conductive oxides (TCO), are conventionally thought to be in equilibrium. Here, we demonstrate that high electrical conductivity of crystalline Ga-doped ZnO TCO thin films occurs by virtue of metastable state of their defects. These results imply that such defect metastability may be important in other functional oxides. This finding emphasizes the need to understand and control non-equilibrium states of materials, in particular, their metastable defects, for the design of novel functional materials.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd