1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Intrinsic optical gain in thin films of a conjugated polymer under picosecond excitation
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/103/3/10.1063/1.4816040
1.
1. B. Wenger, N. Tétreault, M. E. Welland, and R. H. Friend, Appl. Phys. Lett. 97(19), 193303 (2010).
http://dx.doi.org/10.1063/1.3509405
2.
2. M. Anni, Appl. Phys. Lett. 98(25), 253304 (2011).
http://dx.doi.org/10.1063/1.3601854
3.
3. V. G. Kozlov, G. Parthasarathy, P. E. Burrows, V. B. Khalfin, J. Wang, S. Y. Chou, and S. R. Forrest, IEEE J. Quantum Electron. 36(1), 18 (2000).
http://dx.doi.org/10.1109/3.817634
4.
4. G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, Appl. Phys. Lett. 82(3), 313 (2003).
http://dx.doi.org/10.1063/1.1536249
5.
5. T. Riedl, T. Rabe, H. H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, and U. Scherf, Appl. Phys. Lett. 88(24), 241116 (2006).
http://dx.doi.org/10.1063/1.2211947
6.
6. Z. E. Lampert, J. M. Papanikolas, and C. L. Reynolds, Jr., Appl. Phys. Lett. 102, 073303 (2013).
http://dx.doi.org/10.1063/1.4793422
7.
7. S. Richardson, O. P. M. Gaudin, G. A. Turnbull, and I. D. W. Samuel, Appl. Phys. Lett. 91(26), 261104 (2007).
http://dx.doi.org/10.1063/1.2826276
8.
8. D. H. Hu, J. Yu, and P. F. Barbara, J. Am. Chem. Soc. 121(29), 6936 (1999).
http://dx.doi.org/10.1021/ja990139d
9.
9. W. Holzer, A. Penzkofer, S. H. Gong, A. P. Davey, and W. J. Blau, Opt. Quantum Electron. 29(7), 713 (1997).
http://dx.doi.org/10.1023/A:1018500910762
10.
10. K. L. Shaklee and R. F. Leheny, Appl. Phys. Lett. 18(11), 475 (1971).
http://dx.doi.org/10.1063/1.1653501
11.
11. J. Valenta, I. Pelant, and J. Linnros, Appl. Phys. Lett. 81(8), 1396 (2002).
http://dx.doi.org/10.1063/1.1502195
12.
12. U. Ganiel, A. Hardy, G. Neumann, and D. Treves, IEEE J. Quantum Electron. 11(11), 881 (1975).
http://dx.doi.org/10.1109/JQE.1975.1068543
13.
13. M. D. McGehee, R. Gupta, S. Veenstra, E. K. Miller, M. A. Diaz-Garcia, and A. J. Heeger, Phys. Rev. B 58(11), 7035 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.7035
14.
14. F. Lahoz, C. J. Oton, N. Capuj, M. Ferrer-Gonzalez, S. Cheylan, and D. Navarro-Urrios, Opt. Express 17(19), 16766 (2009).
http://dx.doi.org/10.1364/OE.17.016766
15.
15. W. Holzer, A. Penzkofer, H. Tillmann, and H. H. Horhold, Synth. Met. 140(2–3), 155 (2004).
http://dx.doi.org/10.1016/S0379-6779(03)00356-4
16.
16. J. Wang and K. Y. Wong, Appl. Phys. B 87(4), 685 (2007).
http://dx.doi.org/10.1007/s00340-007-2649-z
17.
17. B. H. Cumpston, I. D. Parker, and K. F. Jensen, J. Appl. Phys. 81(8), 3716 (1997).
http://dx.doi.org/10.1063/1.365493
18.
18. G. J. Denton, N. Tessler, N. T. Harrison, and R. H. Friend, Phys. Rev. Lett. 78(4), 733 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.733
19.
19. Z. E. Lampert, S. E. Lappi, J. M. Papanikolas, and C. L. Reynolds, Jr., “ Pulse width dependence of optical gain in thin photopumped films of a conjugated polymer” (unpublished).
20.
20. D. Feldman, J. Polym. Environ. 10(4), 163 (2002).
http://dx.doi.org/10.1023/A:1021148205366
21.
21. B. H. Cumpston and K. F. Jensen, Synth. Met. 73(3), 195 (1995).
http://dx.doi.org/10.1016/0379-6779(95)80015-8
22.
22. T. Q. Nguyen, I. B. Martini, J. Liu, and B. J. Schwartz, J. Phys. Chem. B 104(2), 237 (2000).
http://dx.doi.org/10.1021/jp993190c
23.
23. L. J. Buckley and J. Troutman., DARPA Contract MDA972-02-C-0044 (2005).
24.
24. S. H. Lim, T. G. Bjorklund, and C. J. Bardeen, Chem. Phys. Lett. 342(5), 555 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)00657-1
25.
25. B. Choi and A. J. Welch, Lasers Surg. Med. 29(4), 351 (2001).
http://dx.doi.org/10.1002/lsm.1128
26.
26. M. Rosenberg and T. A. Petrie, Nanotechnology 23(5), 055103 (2012).
http://dx.doi.org/10.1088/0957-4484/23/5/055103
27.
27. H. Wang, X. Tao, and E. Newton, Polym. Int. 53(1), 20 (2004).
http://dx.doi.org/10.1002/pi.1279
28.
28. M. Yan, L. J. Rothberg, E. W. Kwock, and T. M. Miller, Phys. Rev. Lett. 75(10), 1992 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.1992
29.
29. N. de la Rosa-Fox, Opt. Mater. 12(2–3), 267 (1999).
http://dx.doi.org/10.1016/S0925-3467(99)00053-1
30.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/103/3/10.1063/1.4816040
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Dependence of ASE emission intensity on pump fluence for MEH-PPV SWGs under 25 ps (squares) and 8 ns (triangles) pulsed excitation. Insets: molecular structure of MEH-PPV and FWHM of the 0–1 transition vs. pump fluence. The pump stripe length is 0.1 cm.

Image of FIG. 2.

Click to view

FIG. 2.

Emission intensity at as a function of excitation stripe length for MEH-PPV SWGs under 25 ps (a) and 8 ns (b) pulsed excitation at different pump fluences and corresponding values. Insets: normalized PL spectra collected at three different stripe lengths with a pump fluence of 30 and 1000 J/cm for 25 ps and 8 ns excitation, respectively. The threshold excitation length is indicated.

Image of FIG. 3.

Click to view

FIG. 3.

Dependence of the net gain coefficient on effective excitation density (lower x-axis) and pump fluence (upper x-axis) for MEH-PPV SWGs under 8 ns [(a), triangles] and 25 ps [(b), squares] excitation. Note difference in gain scale in (a) and (b).

Loading

Article metrics loading...

/content/aip/journal/apl/103/3/10.1063/1.4816040
2013-07-17
2014-04-20

Abstract

A strong excitation pulse width dependence on optical gain is reported in thin films of the conjugated polymer poly[2-methoxy-5-(2′-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV), which suggests that previously reported gain measurements have occurred in an excitation regime that cause damage to the polymer. Symmetric waveguides Si(100)/SiO/MEH-PPV/poly(methyl methacrylate) are fabricated and optically pumped using laser pulses having temporal widths shorter and longer than the PL decay time, resulting in transient and quasi-steady-state excitation conditions, respectively. Under quasi-steady-state conditions (8 ns pulses), a maximum gain coefficient of ∼135 cm is achieved at a fluence of 2250 J/cm. However, optical gain is observed under transient pumping (25 ps), reaching 700 cm at a fluence of only 85 J/cm; this 5× improvement in optical gain performance is achieved at the same excitation density as that for ns pulses. It is clear that our ps gain measurements more accurately represent the intrinsic net gain of MEH-PPV than prior measurements in the quasi-steady-state regime.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/103/3/1.4816040.html;jsessionid=5k1rpnlmtkuib.x-aip-live-06?itemId=/content/aip/journal/apl/103/3/10.1063/1.4816040&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Intrinsic optical gain in thin films of a conjugated polymer under picosecond excitation
http://aip.metastore.ingenta.com/content/aip/journal/apl/103/3/10.1063/1.4816040
10.1063/1.4816040
SEARCH_EXPAND_ITEM