1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
The investigation of donor-acceptor compatibility in bulk-heterojunction polymer systems
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/103/4/10.1063/1.4816056
1.
1. L. M. Chen, Z. Hong, G. Li, and Y. Yang, Adv. Mater. 21, 1434 (2009).
http://dx.doi.org/10.1002/adma.200802854
2.
2. G. Li, R. Zhu, and Y. Yang, Nature Photon. 6, 153 (2012).
http://dx.doi.org/10.1038/nphoton.2012.11
3.
3. C. R. McNeill and N. C. Greenham, Adv. Mater. 21, 3840 (2009).
http://dx.doi.org/10.1002/adma.200900783
4.
4. S. Sista, Z. Hong, L. M. Chen, and Y. Yang, Energy Environ. Sci. 4, 1606 (2011).
http://dx.doi.org/10.1039/c0ee00754d
5.
5. F. He, W. Wang, W. Chen, T. Xu, S. B. Darling, J. Strzalka, Y. Liu, and L. Yu, J. Am. Chem. Soc. 133, 3284 (2011).
http://dx.doi.org/10.1021/ja1110915
6.
6. Y. Y. Liang, D. Q. Feng, Y. Wu, S. T. Tsai, G. Li, C. Ray, and L. P. Yu, J. Am. Chem. Soc. 131, 7792 (2009).
http://dx.doi.org/10.1021/ja901545q
7.
7. K. H. Ong, S. L. Lim, H. S. Tan, H. K. Wong, J. Li, Z. Ma, L. C. H. Moh, S. H. Lim, J. C. de Mello, and Z. K. Chen, Adv. Mater. 23, 1409 (2011).
http://dx.doi.org/10.1002/adma.201003903
8.
8. J. Hou, H. Y. Chen, S. Zhang, R. I. Chen, Y. Yang, Y. Wu, and G. Li, J. Am. Chem. Soc. 131, 15586 (2009).
http://dx.doi.org/10.1021/ja9064975
9.
9. Y. Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, Adv. Mater. 22, E135 (2010).
http://dx.doi.org/10.1002/adma.200903528
10.
10. M. K. Siddiki, J. Li, D. Galipeau, and Q. Qiao, Energy Environ. Sci. 3, 867 (2010).
http://dx.doi.org/10.1039/b926255p
11.
11. D. Gendron and M. Leclerc, Energy Environ. Sci. 4, 1225 (2011).
http://dx.doi.org/10.1039/c1ee01072g
12.
12. G. Y. Chen, Y. H. Cheng, Y. J. Chou, M. H. Su, C. M. Chen, and K. H. Wei, Chem. Commun. 47, 5064 (2011).
http://dx.doi.org/10.1039/c1cc10585j
13.
13. J. M. Jiang, P. A. Yang, H. C. Chen, and K. H. Wei, Chem. Commun. 47, 8877 (2011).
http://dx.doi.org/10.1039/c1cc12040a
14.
14. M. C. Scharber, D. Wuhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. L. Brabec, Adv. Mater. 18, 789 (2006).
http://dx.doi.org/10.1002/adma.200501717
15.
15. Y. He, H. Y. Chen, J. Hou, and Y. Li, J. Am. Chem. Soc. 132, 1377 (2010).
http://dx.doi.org/10.1021/ja908602j
16.
16. G. Zhao, Y. He, and Y. Li, Adv. Mater. 22, 4355 (2010).
http://dx.doi.org/10.1002/adma.201001339
17.
17. D. W. Laird, R. Stegamat, H. Richter, V. Vejins, L. Scott, and T. A. Lada, Patent WO 2008/018931 A2 (2008).
18.
18. H. Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, Nature Photon. 3, 649 (2009).
http://dx.doi.org/10.1038/nphoton.2009.192
19.
19. J. H. Huang, C. M. Teng, Y. S. Hsiao, F. W. Yen, P. Chen, F. C. Chang, and C. W. Chu, J. Phys. Chem. C 115, 2398 (2011).
http://dx.doi.org/10.1021/jp1090894
20.
20. X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroons, M. A. J. Michels, and R. A. J. Janssen, Nano Lett. 5, 579 (2005).
http://dx.doi.org/10.1021/nl048120i
21.
21. J. H. Huang, F. C. Chien, P. Chen, K. C. Ho, and C. W. Chu, Anal. Chem. 82, 1669 (2010).
http://dx.doi.org/10.1021/ac901992c
22.
22. J. H. Huang, K. C. Li, F. C. Chien, Y. S. Hsiao, D. Kekuda, P. Chen, H. C. Lin, K. C. Ho, and C. W. Chu, J. Phys. Chem. C 114, 9062 (2010).
http://dx.doi.org/10.1021/jp9120639
23.
23. G. Grancini, D. Polli, D. Fazzi, J. C. Gonzalez, G. Cerullo, and G. Lanzani, J. Phys. Chem. Lett. 2, 1099 (2011).
http://dx.doi.org/10.1021/jz200389b
24.
24. M. A. Lampart and P. Mark, Current Injection in Solids (Academic, New York, 1970).
25.
25. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nature Mater. 4, 864 (2005).
http://dx.doi.org/10.1038/nmat1500
26.
26. Z. Xu, L. M. Chen, G. Yang, C. H. Huang, J. Hou, Y. Wu, G. Li, C. S. Hsu, and Y. Yang, Adv. Funct. Mater. 19, 1227 (2009).
http://dx.doi.org/10.1002/adfm.200801286
27.
27. J. Y. Oh, W. S. Jang, T. I. Lee, J. M. Myoung, and H. K. Baik, Appl. Phys. Lett. 98, 023303 (2011).
http://dx.doi.org/10.1063/1.3541648
28.
28. H. Li, H. Tang, L. Li, W. Xu, X. Zhao, and X. Yang, J. Mater. Chem. 21, 6563 (2011).
http://dx.doi.org/10.1039/c1jm10148j
29.
29. Q. Wei, T. Nishizawa, K. Tajima, and K. Hashimoto, Adv. Mater. 20, 2211 (2008).
http://dx.doi.org/10.1002/adma.200792876
30.
30. J. W. Jung, J. W. Jo, and W. H. Jo, Adv. Mater. 23, 1782 (2011).
http://dx.doi.org/10.1002/adma.201003996
31.
31. D. S. Germack, C. K. Chan, B. H. Hamadani, L. J. Richter, D. A. Fischer, D. J. Gundlach, and D. M. DeLongchamp, Appl. Phys. Lett. 94, 233303 (2009).
http://dx.doi.org/10.1063/1.3149706
32.
32. J. S. Kim, Y. Lee, J. H. Lee, J. H. Park, J. K. Kim, and K. Cho, Adv. Mater. 22, 1355 (2010).
http://dx.doi.org/10.1002/adma.200902803
33.
33. C. Z. Li, H. L. Yip, and A. K. Y. Jen, J. Mater. Chem. 22, 4161 (2012).
http://dx.doi.org/10.1039/c2jm15126j
34.
34. N. C. Miller, S. Sweetnam, E. T. Hoke, R. Gysel, C. E. Miller, J. A. Bartelt, X. Xie, M. F. Toney, and M. D. McGehee, Nano Lett. 12, 1566 (2012).
http://dx.doi.org/10.1021/nl204421p
35.
35. E. T. Hoke, K. Vandewal, J. A. Bartelt, W. R. Mateker, J. D. Douglas, R. Noriega, K. R. Graham, J. M. J. Fréchet, A. Salleo, and M. D. McGehee, Adv. Energy Mater. 3, 220 (2013).
http://dx.doi.org/10.1002/aenm.201200474
36.
36. L. T. Dou, J. B. You, J. Yang, C.-C. Chen, Y. J. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, Nature Photon. 6, 180 (2012).
http://dx.doi.org/10.1038/nphoton.2011.356
37.
37. L. Dou, W.-H. Chang, J. Gao, C.-C. Chen, and J. You, Y. Yang, Adv. Mater. 25, 825 (2013).
http://dx.doi.org/10.1002/adma.201203827
38.
38. J. B. You, L. T. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, Nat. Commun. 4, 1446 (2013).
http://dx.doi.org/10.1038/ncomms2411
39.
39.See supplementary material at http://dx.doi.org/10.1063/1.4816056 for additional experimental details and results. [Supplementary Material]
40.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/103/4/10.1063/1.4816056
Loading
/content/aip/journal/apl/103/4/10.1063/1.4816056
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/103/4/10.1063/1.4816056
2013-07-23
2014-07-24

Abstract

The fullerene derivative, indene-C bisadduct (ICBA), has been introduced into poly(3-hexylthiophene) (P3HT) to improve the efficiency of P3HT-based devices. However, we found that ICBA is not suitable for most low bandgap polymers. In this study, we have correlated the cell performance with surface energy between the donor and acceptor materials in a bulk-heterojunction cell. These results show that higher photocurrent can be attributed to the morphology improvement induced by larger surface energy difference (Δγ) between the low bandgap polymer and fullerene. These results also suggest that synthetic strategies which adjust the Δγ between donor and acceptor should be considered.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/103/4/1.4816056.html;jsessionid=27la3o54it1pw.x-aip-live-03?itemId=/content/aip/journal/apl/103/4/10.1063/1.4816056&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The investigation of donor-acceptor compatibility in bulk-heterojunction polymer systems
http://aip.metastore.ingenta.com/content/aip/journal/apl/103/4/10.1063/1.4816056
10.1063/1.4816056
SEARCH_EXPAND_ITEM