1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Three-dimensional anti-Brownian electrokinetic trapping of a single nanoparticle in solution
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/103/4/10.1063/1.4816325
1.
1. L. M. Davis, B. K. Canfield, X. Li, W. H. Hofmeister, G. Shen, I. P. Lescano-Mendoza, B. W. Bomar, J. P. Wikswo, D. A. Markov, P. C. Samson, C. Daniel, Z. Sikorski, and W. N. Robinson, Proc. SPIE 7035, 70350A (2008).
http://dx.doi.org/10.1117/12.798173
2.
2. A. E. Cohen and W. E. Moerner, Appl. Phys. Lett. 86(9), 093109 (2005).
http://dx.doi.org/10.1063/1.1872220
3.
3. A. P. Fields and A. E. Cohen, Methods Enzymol. 475, 149 (2010).
http://dx.doi.org/10.1016/S0076-6879(10)75007-2
4.
4. A. P. Fields and A. E. Cohen, Proc. Natl. Acad. Sci. U.S.A. 108(22), 8937 (2011).
http://dx.doi.org/10.1073/pnas.1103554108
5.
5. A. E. Cohen and W. E. Moerner, Opt. Express 16(10), 6941 (2008).
http://dx.doi.org/10.1364/OE.16.006941
6.
6. R. H. Goldsmith and W. E. Moerner, Nat. Chem. 2(3), 179 (2010).
http://dx.doi.org/10.1038/nchem.545
7.
7. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11(5), 288 (1986).
http://dx.doi.org/10.1364/OL.11.000288
8.
8. M. B. Rasmussen, L. B. Oddershede, and H. Siegumfeldt, Appl. Environ. Microbiol. 74(8), 2441 (2008).
http://dx.doi.org/10.1128/AEM.02265-07
9.
9. Y. F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, Nano Lett. 12(3), 1633 (2012).
http://dx.doi.org/10.1021/nl204561r
10.
10. A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, Nature (London) 457(7225), 71 (2009).
http://dx.doi.org/10.1038/nature07593
11.
11. Y. Pang and R. Gordon, Nano Lett. 12(1), 402 (2012).
http://dx.doi.org/10.1021/nl203719v
12.
12. X. Serey, S. Mandal, Y. F. Chen, and D. Erickson, Phys. Rev. Lett. 108(4), 048102 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.048102
13.
13. A. E. Cohen and A. P. Fields, ACS Nano 5(7), 5296 (2011).
http://dx.doi.org/10.1021/nn202313g
14.
14. W. Robinson, Ph.D. thesis, University of Tennessee at Knoxville, 2011.
15.
15. A. E. Cohen, Ph.D. thesis, Stanford University, 2006.
16.
16. R. Probst and B. Shapiro, J. Micromech. Microeng. 21(2), 027004 (2011).
http://dx.doi.org/10.1088/0960-1317/21/2/027004
17.
17. L. Davis, Z. Sikorski, W. Robinson, G. Shen, X. Li, B. Canfield, I. Lescano, B. Bomar, W. Hofmeister, J. Germann, J. King, Y. White, and A. Terekhov, Proc. SPIE 6862, 68620P (2008).
http://dx.doi.org/10.1117/12.763833
18.
18. J. K. King, M.S. thesis, University of Tennessee at Knoxville, 2009.
19.
19. N. S. Cheng, Ind. Eng. Chem. Res. 47(9), 3285 (2008).
http://dx.doi.org/10.1021/ie071349z
20.
20. A. Dupont and D. C. Lamb, Nanoscale 3(11), 4532 (2011).
http://dx.doi.org/10.1039/c1nr10989h
21.
21. S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995 (2009).
http://dx.doi.org/10.1073/pnas.0900245106
22.
22. H. P. Kao and A. S. Verkman, Biophys. J. 67(3), 1291 (1994).
http://dx.doi.org/10.1016/S0006-3495(94)80601-0
23.
23. L. Holtzer, T. Meckel, and T. Schmidt, Appl. Phys. Lett. 90(5), 053902 (2007).
http://dx.doi.org/10.1063/1.2437066
24.
24. C. Ropp, Z. Cummins, R. Probst, S. Qin, J. T. Fourkas, B. Shapiro, and E. Waks, Nano Lett. 10(11), 4673 (2010).
http://dx.doi.org/10.1021/nl1029557
25.
25. R. Probst, Z. Cummins, C. Ropp, E. Waks, and B. Shapiro, IEEE Control Syst. Mag. 32(2), 26 (2012).
http://dx.doi.org/10.1109/MCS.2011.2181584
26.
26. J. Bechhoefer, Rev. Mod. Phys. 77(3), 783 (2005).
http://dx.doi.org/10.1103/RevModPhys.77.783
27.
27. L. M. Davis, B. K. Canfield, J. A. Germann, J. K. King, W. N. Robinson, A. D. Dukes III, S. J. Rosenthal, P. C. Samson, and J. P. Wikswo, Proc. SPIE 7571, 757112 (2010).
http://dx.doi.org/10.1117/12.842572
http://aip.metastore.ingenta.com/content/aip/journal/apl/103/4/10.1063/1.4816325
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

The optical setup and an exploded view of the microfluidic trapping device and electrode tip detail.

Image of FIG. 2.

Click to view

FIG. 2.

Different frames demonstrating change in PSF at measured axial distances of (a) z = +1.475 m, (b) z = +0.048 m, and (c) z = −1.976 m from the focal plane. Each ROI is 60 × 60 pixels with background subtracted.

Image of FIG. 3.

Click to view

FIG. 3.

Measured 3D positions from one run of a set of 52 trapping instances. The solid red line indicates when active trapping was turned off. The histograms at right show the position probability densities over the entire set and Gaussian fits.

Image of FIG. 4.

Click to view

FIG. 4.

Frame from video of trapping of 40 nm fluorescent nanoparticle in 25% glycerol/water solution (enhanced online). [URL: http://dx.doi.org/10.1063/1.4816325.1]doi: 10.1063/1.4816325.1.

video/mp4,video/x-flv,video/flv,audio.mp3,audio.mpeg

Multimedia

The following multimedia file is available:
Loading

Article metrics loading...

/content/aip/journal/apl/103/4/10.1063/1.4816325
2013-07-22
2014-04-19

Abstract

A microfluidic device with four electrodes in a tetrahedral arrangement is used to demonstrate three-dimensional (3D) trapping of an individual 40 nm fluorescent nanoparticle in solution. Astigmatic imaging is used to determine the particle position in 3D for real-time control of the electrode potentials, which regulate the magnitude and direction of the electric field and the resulting electrokinetic motion of the particle so as to counteract Brownian diffusion. Trapping within a radius of 5 m for extended periods (>1 min) is exhibited for particles with diffusivity 5.2 m2/s and could be improved by increasing the imaging rate of 30 Hz.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/103/4/1.4816325.html;jsessionid=3qudqpepcn4p6.x-aip-live-01?itemId=/content/aip/journal/apl/103/4/10.1063/1.4816325&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Three-dimensional anti-Brownian electrokinetic trapping of a single nanoparticle in solution
http://aip.metastore.ingenta.com/content/aip/journal/apl/103/4/10.1063/1.4816325
10.1063/1.4816325
SEARCH_EXPAND_ITEM