1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Photoacoustic tomography using a Michelson interferometer with quadrature phase detection
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/103/5/10.1063/1.4816427
1.
1. X. Minghua and V. W. Lihong, Rev. Sci. Instrum. 77, 041101 (2006).
http://dx.doi.org/10.1063/1.2195024
2.
2. C. Li and L. V. Wang, Phys. Med. Biol. 54, R59 (2009).
http://dx.doi.org/10.1088/0031-9155/54/19/R01
3.
3. L. V. Wang and S. Hu, Science 335, 1458 (2012).
http://dx.doi.org/10.1126/science.1216210
4.
4. S. Joshi and S. Agarwal, Ann. N. Y. Acad. Sci. 1199, 149 (2010).
http://dx.doi.org/10.1111/j.1749-6632.2009.05381.x
5.
5. R. Esenaliev, A. Karabutov, and A. Oraevsky, IEEE J. Sel. Top. Quantum Electron. 5, 981 (1999).
http://dx.doi.org/10.1109/2944.796320
6.
6. A. A. Oraevsky, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. A. Andreev, Z. Gatalica, H. Singh, and R. D. Fleming, Proc. SPIE 4256, 6 (2001).
http://dx.doi.org/10.1117/12.429300
7.
7. Y. Yang, S. Wang, C. Tao, X. Wang, and X. Liu, Appl. Phys. Lett. 101, 034105 (2012).
http://dx.doi.org/10.1063/1.4736994
8.
8. L. V. Wang, Med. Phys. 35, 5758 (2008).
http://dx.doi.org/10.1118/1.3013698
9.
9. L. Xiang, B. Wang, L. Ji, and H. Jiang, Sci. Rep. 3, 1113 (2013).
http://dx.doi.org/10.1038/srep01113
10.
10. Y. Hou, J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O’Donnell, Appl. Phys. Lett. 91, 073507 (2007).
http://dx.doi.org/10.1063/1.2771058
11.
11. P. C. Beard and T. N. Mills, Appl. Opt. 35, 663 (1996).
http://dx.doi.org/10.1364/AO.35.000663
12.
12. J. Hamilton and M. O’Donnell, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 216 (1998).
http://dx.doi.org/10.1109/58.646927
13.
13. G. Paltauf, R. Nuster, M. Haltmeier, and P. Burgholzer, Appl. Opt. 46, 3352 (2007).
http://dx.doi.org/10.1364/AO.46.003352
14.
14. C. M. Chow, Y. Zhou, Y. Guo, T. B. Norris, X. Wang, C. X. Deng, and J. Y. Ye, J. Biomed. Opt. 16, 017001 (2011).
http://dx.doi.org/10.1117/1.3528014
15.
15. E. Zhang, J. Laufer, and P. Beard, Appl. Opt. 47, 561 (2008).
http://dx.doi.org/10.1364/AO.47.000561
16.
16. M. Lamont and P. Beard, Electron. Lett. 42, 187 (2006).
http://dx.doi.org/10.1049/el:20064135
17.
17. S.-W. Huang, S.-L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, Appl. Phys. Lett. 92, 193509 (2008).
http://dx.doi.org/10.1063/1.2929379
18.
18. G. Paltauf, H. Schmidt-Kloiber, K. P. Köstli, and M. Frenz, Appl. Phys. Lett. 75, 1048 (1999).
http://dx.doi.org/10.1063/1.124592
19.
19. G. Paltauf and H. Schmidt-Kloiber, J. Appl. Phys. 82, 1525 (1997).
http://dx.doi.org/10.1063/1.365953
20.
20. J. Blitz, Fundamentals of Ultrasonics (Butterworths Co., London, 1963).
21.
21. R. Mezrich, D. Vilkomerson, and K. Etzold, Appl. Opt. 15, 1499 (1976).
http://dx.doi.org/10.1364/AO.15.001499
22.
22. V. A. Shutilov, Fundamental Physics of Ultrasound (Gordon and Breach Science Publishers, New York, 1988).
23.
23. American National Standards Institute, ANSI Z136.1 (American National Standards Institute, 2007).
24.
24. K. P. Kostli, M. Frenz, H. Bebie, and H. P. Weber, Phys. Med. Biol. 46, 1863 (2001).
http://dx.doi.org/10.1088/0031-9155/46/7/309
25.
25. B. E. Treeby and B. T. Cox, J. Biomed. Opt. 15, 021314 (2010).
http://dx.doi.org/10.1117/1.3360308
http://aip.metastore.ingenta.com/content/aip/journal/apl/103/5/10.1063/1.4816427
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

A schematic of the Michelson interferometer detector. Ultrasound passing through the sensing mirror changes the path length of the light, which alters the phase of the interference pattern. Quadrature phase detection allows high sensitivity to be achieved, whatever the mirror positions.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Schematic of the sensing mirror showing probe laser. (b) The back side of the sensing mirror used in this experiment.

Image of FIG. 3.

Click to view

FIG. 3.

(a) The detected mirror displacement due to a photoacoustic wave produced from a single source and (b) the corresponding pressure wave. A comparison between simulated and experimental pressure data shows the calculated sensitivity for the system is accurate.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Detected acoustic pressure from a single photoacoustic source and (b) the corresponding reconstructed image of the source. The size and location of the source is indicated by the circle in the magnified inset.

Loading

Article metrics loading...

/content/aip/journal/apl/103/5/10.1063/1.4816427
2013-07-29
2014-04-21

Abstract

We present a pressure sensor based on a Michelson interferometer, for use in photoacoustic tomography. Quadrature phase detection is employed allowing measurement at any point on the mirror surface without having to retune the interferometer, as is typically required by Fabry-Perot type detectors. This opens the door to rapid full surface detection, which is necessary for clinical applications. Theory relating acoustic pressure to detected acoustic particle displacements is used to calculate the detector sensitivity, which is validated with measurement. Proof-of-concept tomographic images of blood vessel phantoms have been taken with sub-millimeter resolution at depths of several millimeters.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/103/5/1.4816427.html;jsessionid=g9j534q5pl54s.x-aip-live-01?itemId=/content/aip/journal/apl/103/5/10.1063/1.4816427&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Photoacoustic tomography using a Michelson interferometer with quadrature phase detection
http://aip.metastore.ingenta.com/content/aip/journal/apl/103/5/10.1063/1.4816427
10.1063/1.4816427
SEARCH_EXPAND_ITEM