NOTICE: Scitation Maintenance Sunday, March 1, 2015.

Scitation users may experience brief connectivity issues on Sunday, March 1, 2015 between 12:00 AM and 7:00 AM EST due to planned network maintenance.

Thank you for your patience during this process.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Adv. Funct. Mater. 11, 15 (2001).<15::AID-ADFM15>3.0.CO;2-A
2. M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, Prog. Photovoltaics 20, 12 (2012).
3. T. J. K. Brenner, I. Hwang, N. C. Greenham, and C. R. McNeill, J. Appl. Phys. 107, 114501 (2010).
4. F. Zhang, X. Xu, W. Tang, J. Zhang, Z. Zhuo, J. Wang, J. Wang, Z. Xu, and Y. Wang, Sol. Energy Mater. Sol. Cells 95, 1785 (2011).
5. Y. Sahin, S. Alem, R. de Bettignies, and J.-M. Nunzi, Thin Solid Films 476, 340 (2005).
6. G. Li, C.-W. Chu, V. Shrotriya, J. Huang, and Y. Yang, Appl. Phys. Lett. 88, 253503 (2006).
7. S. K. Hau, H.-L. Yip, N. S. Baek, J. Zou, K. O'Malley, and A. K.-Y. Jen, Appl. Phys. Lett. 92, 253301 (2008).
8. C. S. Kim, S. S. Lee, E. D. Gomez, J. B. Kim, and Y.-L. Loo, Appl. Phys. Lett. 94, 113302 (2009).
9. J. J. M. Halls, A. C. Arias, J. D. MacKenzie, W. Wu, M. Inbasekaran, E. P. Woo, and R. H. Friend, Adv. Mater. 12, 498 (2000).<498::AID-ADMA498>3.0.CO;2-H
10. X. Yang and J. Loos, Macromolecules 40, 1353 (2007).
11. T. J. K. Brenner and C. R. McNeill, J. Phys. Chem. C 115, 19364 (2011).
12. C. McNeill, H. Frohne, J. Holdsworth, and P. Dastoor, Nano Lett. 4, 2503 (2004).
13. A. Gonzalez-Rabade, A. Morteani, and R. Friend, Adv. Mater. 21, 3924 (2009).
14. Y. Kim, S. Cook, S. A. Choulis, J. Nelson, J. R. Durrant, and D. D. C. Bradley, Chem. Mater. 16, 4812 (2004).
15. H. Hoppe and N. S. Sariciftci, J. Mater. Chem. 16, 45 (2006).
16. J. Slota, X. Hea, and W. Hucka, Nano Today 5, 231 (2010).
17. M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, Appl. Phys. Lett. 89, 143517 (2006).
18. C. R. McNeill, A. Abrusci, I. Hwang, M. A. Ruderer, P. Muller-Buschbaum, and N. C. Greenham, Adv. Funct. Mater. 19, 3103 (2009).
19. M. Shin, H. Kim, and Y. Kim, Mater. Sci. Eng. B 176, 382 (2011).
20. R. Xia, P. Stavrinou, D. D. C. Bradley, and Y. Kim, J. Appl. Phys. 111, 123107 (2012).
21. S. Nam, M. Shin, S. Park, S. Lee, H. Kim, and Y. Kim, Phys. Chem. Chem. Phys. 14, 15046 (2012).
22. Y. Kim and D. Bradley, Curr. Appl. Phys. 5, 222 (2005).
23.The presence of bright coincident F8BT and rrP3HT regions showing low PC could be simply explained by a locally higher film thickness resulting in the observed PL enhancement and PC collection decrease. However it is easy to estimate that the observed PL variation of about 20% would be given by a film thickness increase of about 40 nm, which would result in a PC decrease of the order of 40%,14 being much lower than the observed one. We can also exclude that the observed EQE non uniformity can be related to the roughness of both the blend and the ZnO, as a uniform roughness of about 10 nm has been measured by Atomic Force Microscopy for both layers, which does not affect the overall device performances, as shown by Maet al.26
24.In order to investigate the local variations of charge generation the PL of the electron donor (rrP3HT) has been chosen as typically complementary to the PC, and less affected by local variations of the vertical arrangement of the polymers.11
25. M. Abramoff, P. Magalhaes, and S. Ram, Biophotonics Int. 11, 36 (2004), available at
26. Z. Ma, Z. Tang, E. Wang, M. R. Andersson, O. Inganäs, and F. Zhang, J. Phys. Chem. C 116, 24462 (2012).

Data & Media loading...


Article metrics loading...



Simultaneous photoluminescence (PL) and external quantum efficiency (EQE) confocal mapping is used to investigate the correlation between the local PL and the EQE in a regioregular poly(3-exylthiophene):poly(9,9-dioctylfluorene-co-benzothiadiazole) inverted bulk heterojunction solar cell. We show that the charge generation and charge collection are strongly non-uniform on a length scale up to 100 m. Our results evidence that organic solar cells optimization requires not only the control of the submicrometric active materials arrangement but also the control of the large scale device uniformity.


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: On the spatial inhomogeneity of charge generation and collection in inverted all polymer solar cells