1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Hybrid heterostructures based on aromatic polyimide and semiconductor CdSe quantum dots for photovoltaic applications
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/103/6/10.1063/1.4817722
1.
1. D. J. Norris and M. G. Bawendi, Phys. Rev. B 53, 1633816346 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.16338
2.
2. C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc. 115, 87068715 (1993).
http://dx.doi.org/10.1021/ja00072a025
3.
3. F. Li, S. H. Cho, D. I. Son, T. W. Kim, S. K. Lee, Y. H. Cho, and S. Jin, Appl. Phys. Lett. 94, 111906 (2009).
http://dx.doi.org/10.1063/1.3098400
4.
4. M. H. Chen, J. Hou, Z. Hong, G. Yang, S. Sista, L. M. Chen, and Y. Yang, Adv. Mater. 21, 42384242 (2009).
http://dx.doi.org/10.1002/adma.200900510
5.
5. J. Y. Lek, L. Xi, B. E. Kardynal, L. H. Wong, and Y. M. Lam, ACS Appl. Mater. Interfaces 3, 287292 (2011).
http://dx.doi.org/10.1021/am100938f
6.
6. A. Tang, F. Teng, H. Jin, Y. Gao, Y. Hou, C. Liang, and Y. Wang, Mater. Lett. 61, 21782181 (2007).
http://dx.doi.org/10.1016/j.matlet.2006.08.042
7.
7. O. E. Semonin, J. M. Luther, S. Choi, H. Y. Chen, J. Gao, A. J. Nozik, and M. C. Beard, Science 334, 15301533 (2011).
http://dx.doi.org/10.1126/science.1209845
8.
8. S. Ren, L. Y. Chang, S. K. Lim, J. Zhao, M. Smith, N. Zhao, V. Bulovic, M. Bawendi, and S. Gradecak, Nano Lett. 11, 39984002 (2011).
http://dx.doi.org/10.1021/nl202435t
9.
9. S. H. Choi, H. Song, I. K. Park, J. H. Yum, S. S. Kim, S. Lee, and Y. E. Sung, J. Photochem. Photobiol., A 179, 135141 (2006).
http://dx.doi.org/10.1016/j.jphotochem.2005.08.004
10.
10. J. A. Cella, Polym. Degrad. Stab. 36, 99110 (1992).
http://dx.doi.org/10.1016/0141-3910(92)90145-U
11.
11. E. I. Mal'tsev, D. A. Lypenko, V. V. Bobinkin, A. R. Tameev, S. V. Kirillov, B. I. Shapiro, H. F. M. Schoo, and V. A. Vannikov, Appl. Phys. Lett. 81, 30883090 (2002).
http://dx.doi.org/10.1063/1.1515880
12.
12. A. R. Tameev, A. A. Kozlov, A. V. Vannikov, E. V. Lunina, V. I. Berendyaev, and B. V. Kotov, Polym. Int. 47, 198202 (1998).
http://dx.doi.org/10.1002/(SICI)1097-0126(1998100)47:2<198::AID-PI50>3.0.CO;2-R
13.
13. V. A. Kolesnikov, M. G. Tedoradze, A. R. Tameev, and A. V. Vannikov, Polym. Sci., Ser. B 50, 305309 (2008).
http://dx.doi.org/10.1134/S156009040811002X
14.
14. A. A. Chistyakov, S. V. Dayneko, V. A. Kolesnikov, K. E. Mochalov, V. A. Oleinikov, M. G. Tedoradze, and K. V. Zakharchenko, Laser Phys. Lett. 6, 718722 (2009).
http://dx.doi.org/10.1002/lapl.200910061
15.
15. I. G. Hill and A. Kahn, J. Appl. Phys. 86, 45154519 (1999).
http://dx.doi.org/10.1063/1.371395
16.
16. A. M. Munro, B. Zacher, A. Graham, and N. R. Armstrong, ACS Appl. Mater. Interfaces 2, 863869 (2010).
http://dx.doi.org/10.1021/am900834y
17.
17. A. A. Chistyakov, I. L. Martynov, K. E. Mochalov, V. A. Oleinikov, and K. V. Zakharchenko, Laser Phys. 18, 925938 (2008).
http://dx.doi.org/10.1134/S1054660X0808001X
18.
18. H. Song and S. Lee, Nanotechnology 18, 055402 (2007).
http://dx.doi.org/10.1088/0957-4484/18/5/055402
19.
19. D. V. Talapin, J. H. Nelson, E. V. Shevchenko, S. Aloni, B. Sadtler, and A. P. Alivisatos, Nano Lett. 7, 29512959 (2007).
http://dx.doi.org/10.1021/nl072003g
20.
20. K. V. Zakharchenko, E. A. Obraztcova, K. E. Mochalov, M. V. Artemyev, I. L. Martynov, D. V. Klinov, I. R. Nabiev, A. A. Chistyakov, and V. A. Oleinikov, Laser Phys. 15, 11501153 (2005).
21.
21. S. Dayneko, M. Tedoradze, M. Artemyev, I. Nabiev, and A. Chistyakov, Proc. SPIE 8471, 84710W (2012).
http://dx.doi.org/10.1117/12.929573
22.
22. J. Simon and J.-J. Andre, “Molecular Semiconductors. Photoelectrical properties and solar cells.” (Springer, Berlin/Heidelberg, 1985), p. 288.
http://dx.doi.org/10.1002/ange.19860981035
23.
23.See supplementary material at http://dx.doi.org/10.1063/1.4817722 for transmission electron microscopy images of PI containing the quantum dots at different nanoparticle concentrations. [Supplementary Material]
24.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/103/6/10.1063/1.4817722
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) The structure of PI; (b) the structure of the photovoltaic cell; and (c) the energy diagram of the cell consisting of an ITO electrode, a thin layer of Cu-phthalocyanine (CuPc), a layer of PI doped with CdSe QDs, and an aluminum electrode.

Image of FIG. 2.

Click to view

FIG. 2.

(a) The absorption spectra of the CuPc layer (black) and CdSe QD dispersion in chlorobenzene (red) and the luminescence spectrum of the PI:CdSe layer (blue). (b) The J–V curves of the ITO/CuPc/PI/Al and ITO/CuPc/PI:CdSe/Al photovoltaic cells with different concentrations of CdSe QDs illuminated at 50 mW/cm with a Newport Oriel solar simulator.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Integrated luminescence of QDs in the PI:CdSe structure normalized to their mass concentration. TEM images of PI containing CdSe QDs at concentration of about (b) 25 wt. %; (c) 60 wt. %, and (d) 80 wt. %.

Tables

Generic image for table

Click to view

Table I.

Performance parameters of the designed structures illuminated at 50 mW/cm.

Loading

Article metrics loading...

/content/aip/journal/apl/103/6/10.1063/1.4817722
2013-08-06
2014-04-23

Abstract

A nanohybrid photoactive material based on aromatic polyimide (PI) doped with CdSe quantum dots (QDs) has been developed to be used in photovoltaic solar cells. The solar cell is based on a heterostructure of an ITO electrode covered with a layer of Cu–phthalocyanine and a layer of a PI–QD composite. The photovoltaic properties of the CuPc/PI:CdSe hybrid heterostructure at various QD concentrations in the PI matrix have been studied. Luminescent and transmission electron microscopy analyses have shown that the optimal QD mass concentration is 60%. The efficiency of the solar cell based on optimized PI:CdSe structures approaches those for the structures based on conventional MEH-PPV organic semiconductor. Moreover, the photovoltaic characteristics of the solar cell remain stable in the air for a long time (120 h). This is expected to considerably simplify the technology of manufacturing these hybrid solar cells. The mechanisms of the excitation and charge transfer from QDs to the organic semiconductors and influence of QDs on the efficiency of solar energy conversion to electricity are discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/103/6/1.4817722.html;jsessionid=166ftuieba1y1.x-aip-live-03?itemId=/content/aip/journal/apl/103/6/10.1063/1.4817722&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Hybrid heterostructures based on aromatic polyimide and semiconductor CdSe quantum dots for photovoltaic applications
http://aip.metastore.ingenta.com/content/aip/journal/apl/103/6/10.1063/1.4817722
10.1063/1.4817722
SEARCH_EXPAND_ITEM