1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Taylor series expansion based multidimensional image reconstruction for confocal and microscopy
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/103/7/10.1063/1.4817928
1.
1. A. P. Dempster, N. M. Laird, and D. B. Rubin, J. R. Stat. Soc. Ser. B 39, 1 (1977).
2.
2. P. P. Mondal, Appl. Phys. Lett. 92, 013902 (2008).
http://dx.doi.org/10.1063/1.2830996
3.
3. P. P. Mondal, G. Vicidomini, and A. Diaspro, Appl. Phys. Lett. 92, 103902 (2008).
http://dx.doi.org/10.1063/1.2888177
4.
4. G. M. P. van Kempen and L. J. van Vliet, J. Microsc. 198, 63 (2000).
http://dx.doi.org/10.1046/j.1365-2818.2000.00671.x
5.
5. P. Sarder and A. Nehorai, IEEE Signal Process. Mag. 23, 32 (2006).
http://dx.doi.org/10.1109/MSP.2006.1628876
6.
6. K. R. Castleman, Q. Wu, and F. Merchant, Microscope Image Processing (Academic Press, 2008).
7.
7. S. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, IEEE J. Sel. Top. Signal Process. 1, 606 (2007).
http://dx.doi.org/10.1109/JSTSP.2007.910971
8.
8. B. Lich, X. Zhuge, P. Potocek, F. Boughorbel, and C. Mathisen, Biophys. J. 104, 500a (2013).
http://dx.doi.org/10.1016/j.bpj.2012.11.2758
9.
9. E. A. Mukamel, H. Babcock, and X. Zhuang, Biophys. J. 102, 2391 (2012).
http://dx.doi.org/10.1016/j.bpj.2012.03.070
10.
10. W. H. Richardson, J. Opt. Soc. Am. 62, 55 (1972).
http://dx.doi.org/10.1364/JOSA.62.000055
11.
11. L. B. Lucy, Astron. J. 79, 745 (1974).
http://dx.doi.org/10.1086/111605
12.
12. M. Bertero and P. Boccacci, Introduction of Inverse Problems in Imaging (IOP, London, 1998).
13.
13. S. Geman and D. Geman, IEEE Trans. Pattern Anal. Mach. Intell. 6, 721 (1984).
http://dx.doi.org/10.1109/TPAMI.1984.4767596
14.
14. P. P. Mondal, G. Vicidomini, and A. Diaspro, J. Appl. Phys. 102, 044701 (2007).
http://dx.doi.org/10.1063/1.2770961
15.
15. Z. Zhou, R. M. Leahy, and J. Qi, IEEE Trans. Image Process. 6, 844 (1997).
http://dx.doi.org/10.1109/83.585235
16.
16. S. W. Hell and J. Wichmann, Opt. Lett. 19, 780 (1994).
http://dx.doi.org/10.1364/OL.19.000780
17.
17. Y. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z. Bao, D. Coln-Ramos, and H. Shroff, Proc. Natl. Acad. Sci. 108, 17708 (2011).
http://dx.doi.org/10.1073/pnas.1108494108
18.
18. A. H. Voie, D. H. Burns, and F. A. Spelman, J. Microsc. 170, 229 (1993).
http://dx.doi.org/10.1111/j.1365-2818.1993.tb03346.x
19.
19. F. C. Zanacchi, Z. Lavagnino, M. P. Donnorso, A. Del Bue, L. Furia, M. Faretta, and A. Diaspro, Nat. Methods 8, 1047 (2011).
http://dx.doi.org/10.1038/nmeth.1744
20.
20. D. L. Snyder and M. I. Miller, IEEE Trans. Nucl. Sci. 32, 3864 (1985).
http://dx.doi.org/10.1109/TNS.1985.4334521
21.
21. T. Herbert and R. Leahy, IEEE Trans. Med. Imaging 8, 194 (1989).
http://dx.doi.org/10.1109/42.24868
22.
22. J. Besag, J. R. Stat. Soc. Ser. B (Methodol.) 36, 192 (1974).
23.
23. M. Born and E. Wolf, Principles of Optics, 6th ed. (Cambridge Univ. Press, London, 1980).
24.
24. O. Haeberle and B. Simon, Optics Commun. 282, 3657 (2009).
http://dx.doi.org/10.1016/j.optcom.2009.06.025
25.
25. M. Schrader, S. W. Hell, and H. T. M. Vander Voort, J. Appl. Phys. 84, 4033 (1998).
http://dx.doi.org/10.1063/1.368616
26.
26. I. Csiszar, Ann. Stat. 19, 2032 (1991).
http://dx.doi.org/10.1214/aos/1176348385
27.
27. N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J. C. O. Marin, and J. Zerubia, Microsc. Res. Techn. 69, 260 (2006).
http://dx.doi.org/10.1002/jemt.20294
28.
28.See supplementary material at http://dx.doi.org/10.1063/1.4817928 for fdetailed information about the performance of TSA technique (along with intensity plots) and comparison of TSA technique with other standard techniques (ML and MAP). [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/apl/103/7/10.1063/1.4817928
Loading
/content/aip/journal/apl/103/7/10.1063/1.4817928
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/103/7/10.1063/1.4817928
2013-08-13
2014-12-19

Abstract

We propose and experimentally demonstrate a three-dimensional (3D) image reconstruction methodology based on Taylor series approximation (TSA) in a Bayesian image reconstruction formulation. TSA incorporates the requirement of analyticity in the image domain, and acts as a finite impulse response filter. This technique is validated on images obtained from widefield, confocal laser scanning fluorescence microscopy and two-photon excited 4pi (2PE-4) fluorescence microscopy. Studies on simulated 3D objects, mitochondria-tagged yeast cells (labeled with Mitotracker Orange) and mitochondrial networks (tagged with Green fluorescent protein) show a signal-to-background improvement of 40% and resolution enhancement from 360 to 240 nm. This technique can easily be extended to other imaging modalities (single plane illumination microscopy (SPIM), individual molecule localization SPIM, stimulated emission depletion microscopy and its variants).

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/103/7/1.4817928.html;jsessionid=1l8i6clq1p7qi.x-aip-live-03?itemId=/content/aip/journal/apl/103/7/10.1063/1.4817928&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Taylor series expansion based multidimensional image reconstruction for confocal and 4pi microscopy
http://aip.metastore.ingenta.com/content/aip/journal/apl/103/7/10.1063/1.4817928
10.1063/1.4817928
SEARCH_EXPAND_ITEM