1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Embedded graphene for large-area silicon-based devices
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/103/7/10.1063/1.4818461
1.
1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
2.
2. E. V. Castro, H. Ochoa, M. I. Katsnelson, R. Gorbachev, D. C. Elias, K. S. Novoselov, A. K. Geim, and F. Guinea, Phys. Rev. Lett. 105, 266601 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.266601
3.
3. X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Nat. Nanotechnol. 3, 491 (2008).
http://dx.doi.org/10.1038/nnano.2008.199
4.
4. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324, 1312 (2009).
http://dx.doi.org/10.1126/science.1171245
5.
5. W. Liu, H. Li, C. Xu, Y. Khatami, and K. Banerjee, Carbon 49, 4122 (2011).
http://dx.doi.org/10.1016/j.carbon.2011.05.047
6.
6. S. Lee, K. Lee, and Z. Zhong, Nano Lett. 10, 4702 (2010).
http://dx.doi.org/10.1021/nl1029978
7.
7. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, Nat. Nanotechnol. 5, 574 (2010).
http://dx.doi.org/10.1038/nnano.2010.132
8.
8. R. He, L. Zhao, N. Petrone, K. S. Kim, M. Roth, J. Hone, P. Kim, A. Pasupathy, and A. Pinczuk, Nano Lett. 12, 2408 (2012).
http://dx.doi.org/10.1021/nl300397v
9.
9. B.-J. Kim, C. Lee, M. A. Mastro, J. K. Hite, C. R. Eddy, Jr., F. Ren, S. J. Pearton, and J. Kim, Appl. Phys. Lett. 101, 031108 (2012).
http://dx.doi.org/10.1063/1.4733981
10.
10. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.187401
11.
11. N. Nakanishi, H. Arie, Y. Kunimune, T. Ide, Y. Hirose, N. Hattori, and T. Koyama, J. Appl. Phys. 112, 043518 (2012).
http://dx.doi.org/10.1063/1.4747838
12.
12. S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri, Nature Mater. 6, 198 (2007).
http://dx.doi.org/10.1038/nmat1846
13.
13. W. Kohn, Phys. Rev. Lett. 2, 393 (1959).
http://dx.doi.org/10.1103/PhysRevLett.2.393
14.
14. S. Piscanec, M. Lazzeri, M. Mauri, A. C. Ferrari, and J. Robertson, Phys. Rev. Lett. 93, 185503 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.185503
15.
15. M. Lazzeri and F. Mauri, Phys. Rev. Lett. 97, 266407 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.266407
16.
16. C. Metzger, S. Remi, M. K. Liu, S. V. Kusminskiy, A. H. C. Neto, A. K. Swan, and B. B. Goldberg, Nano Lett. 10, 6 (2010).
http://dx.doi.org/10.1021/nl901625v
17.
17. F. Ding, H. X. Ji, Y. H. Chen, A. Herklotz, K. Dorr, Y. F. Mei, A. Rastelli, and O. G. Schmidt, Nano Lett. 10, 3453 (2010).
http://dx.doi.org/10.1021/nl101533x
18.
18. Y. C. Cheng, Z. Y. Zhu, G. S. Huang, and U. Schwingenschlögl, Phys. Rev. B 83, 115449 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.115449
19.
19. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, Nat. Nanotechnol. 3, 210 (2008).
http://dx.doi.org/10.1038/nnano.2008.67
20.
20. M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Phys. Rep. 409, 47 (2005).
http://dx.doi.org/10.1016/j.physrep.2004.10.006
21.
21. H. Park, B. Choi, A. Steigerwald, K. Varga, and N. Tolk, J. Appl. Phys. 113, 023711 (2013).
http://dx.doi.org/10.1063/1.4773527
22.
22. G. J. Gerardi, E. H. Poindexter, P. J. Caplan, and N. M. Johnson, Appl. Phys. Lett. 49, 348 (1986).
http://dx.doi.org/10.1063/1.97611
23.
23. J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, Nat. Nanotechnol. 3, 206 (2008).
http://dx.doi.org/10.1038/nnano.2008.58
24.
24. J.-H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, and M. Ishigami, Nat. Phys. 4, 377 (2008).
http://dx.doi.org/10.1038/nphys935
25.
25. J. Bardeen and W. Schockley, Phys. Rev. 80, 72 (1950).
http://dx.doi.org/10.1103/PhysRev.80.72
http://aip.metastore.ingenta.com/content/aip/journal/apl/103/7/10.1063/1.4818461
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Characteristic Raman spectra of bare graphene on glass, capped with amorphous, and post-crystallized silicon. Data points and error bars indicate mean Raman shift and standard deviation obtained from different positions on the sample. For clarity, the spectra are shifted vertically and the graphene part is magnified by a factor of 10.

Image of FIG. 2.

Click to view

FIG. 2.

Temperature dependence of (a) Hall mobility, (b) charge carrier density, and (c) sheet resistance of bare graphene on a glass, capped with amorphous, and post-crystallized silicon. Open and closed symbols denote hole and electron conduction, respectively.

Image of FIG. 3.

Click to view

FIG. 3.

Temperature dependence of the charge-carrier mobility of graphene embedded in a-Si. The dashed and dotted lines represent scattering processes of the form . The solid line represents a fit with and .

Tables

Generic image for table

Click to view

Table I.

Mean frequency and standard deviation of the D, G, and 2D phonon modes of bare and embedded graphene.

Loading

Article metrics loading...

/content/aip/journal/apl/103/7/10.1063/1.4818461
2013-08-12
2014-04-24

Abstract

Macroscopic graphene films buried below amorphous and crystalline silicon capping layers are studied by Raman backscattering spectroscopy and Hall-effect measurements. The graphene films are grown by chemical vapor deposition on copper foil and transferred to glass substrates. Uncapped films possess charge-carrier mobilities of 2030 cm/Vs at hole concentrations of 3.6 × 10 cm. Graphene withstands the deposition and subsequent crystallization of silicon capping layers. However, the crystallinity of the silicon cap has large influence on the field-induced doping of graphene. Temperature dependent Hall-effect measurements reveal that the mobility of embedded graphene is limited by charged-impurity and phonon-assisted scattering.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/103/7/1.4818461.html;jsessionid=1j4jqqn9gtm9o.x-aip-live-01?itemId=/content/aip/journal/apl/103/7/10.1063/1.4818461&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Embedded graphene for large-area silicon-based devices
http://aip.metastore.ingenta.com/content/aip/journal/apl/103/7/10.1063/1.4818461
10.1063/1.4818461
SEARCH_EXPAND_ITEM