1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Probing bias stress effect and contact resistance in bilayer ambipolar organic field-effect transistors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/103/7/10.1063/1.4818644
1.
1. A. Dodabalapur, H. E. Katz, L. Torsi, and R. C. Haddon, Science 269, 1560 (1995).
http://dx.doi.org/10.1126/science.269.5230.1560
2.
2. E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. van Veenendaal, B. H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, and T. M. Klapwijk, Nature Mater. 2, 678 (2003).
http://dx.doi.org/10.1038/nmat978
3.
3. J. Wang, H. B. Wang, X. J. Yan, H. C. Huang, D. Jin, J. W. Shi, Y. H. Tang, and D. H. Yan, Adv. Funct. Mater. 16, 824 (2006).
http://dx.doi.org/10.1002/adfm.200500111
4.
4. J. Zaumseil and H. Sirringhaus, Chem. Rev. 107, 1296 (2007).
http://dx.doi.org/10.1021/cr0501543
5.
5. T. D. Anthopoulos, D. M. de Leeuw, E. Cantatore, S. Setayesh, E. J. Meijer, C. Tanase, J. C. Hummelen, and P. W. M. Blom, Appl. Phys. Lett. 85, 4205 (2004).
http://dx.doi.org/10.1063/1.1812577
6.
6. S. D. Wang, K. Kanai, Y. Ouchi, and K. Seki, Org. Electron. 7, 457 (2006).
http://dx.doi.org/10.1016/j.orgel.2006.06.001
7.
7. H. Klauk, U. Zschieschang, J. Pflaum, and M. Halik, Nature 445, 745 (2007).
http://dx.doi.org/10.1038/nature05533
8.
8. A. Hepp, H. Heil, W. Weise, M. Ahles, R. Schmechel, and H. von Seggern, Phys. Rev. Lett. 91, 157406 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.157406
9.
9. C. Rost, S. Karg, W. Riess, M. A. Loi, M. Murgia, and M. Muccini, Appl. Phys. Lett. 85, 1613 (2004).
http://dx.doi.org/10.1063/1.1785290
10.
10. M. A. McCarthy, B. Liu, E. P. Donoghue, I. Kravchenko, D. Y. Kim, F. So, and A. G. Rinzler, Science 332, 570 (2011).
http://dx.doi.org/10.1126/science.1203052
11.
11. M. L. Tang, A. D. Reichardt, N. Miyaki, R. M. Stoltenberg, and Z. N. Bao, J. Am. Chem. Soc. 130, 6064 (2008).
http://dx.doi.org/10.1021/ja8005918
12.
12. S. Noro, T. Takenobu, Y. Iwasa, H. C. Chang, S. Kitagawa, T. Akutagawa, and T. Nakamura, Adv. Mater. 20, 3399 (2008).
http://dx.doi.org/10.1002/adma.200800558
13.
13. Y. Y. Liu, C. L. Song, W. J. Zeng, K. G. Zhou, Z. F. Shi, C. B. Ma, F. Yang, H. L. Zhang, and X. Gong, J. Am. Chem. Soc. 132, 16349 (2010).
http://dx.doi.org/10.1021/ja107046s
14.
14. P. Sonar, S. P. Singh, Y. Li, M. S. Soh, and A. Dodabalapur, Adv. Mater. 22, 5409 (2010).
http://dx.doi.org/10.1002/adma.201002973
15.
15. C. Rost, D. J. Gundlach, S. Karg, and W. Rieβ, J. Appl. Phys. 95, 5782 (2004).
http://dx.doi.org/10.1063/1.1702141
16.
16. A. Babel, J. D. Wind, and S. A. Jenekhe, Adv. Funct. Mater. 14, 891 (2004).
http://dx.doi.org/10.1002/adfm.200305180
17.
17. Y. Zhou, S. T. Han, Z. X. Xu, and V. A. L. Roy, Adv. Mater. 24, 1247 (2012).
http://dx.doi.org/10.1002/adma.201104375
18.
18. M. Treier, J. B. Arlin, C. Ruzié, Y. H. Geerts, V. Lemaur, J. Cornil, and P. Samorì, J. Mater. Chem. 22, 9509 (2012).
http://dx.doi.org/10.1039/c2jm31063e
19.
19. S. G. J. Mathijssen, M. Cölle, H. Gomes, E. C. P. Smits, B. de Boer, I. McCulloch, P. A. Bobbert, and D. M. de Leeuw, Adv. Mater. 19, 2785 (2007).
http://dx.doi.org/10.1002/adma.200602798
20.
20. S. D. Wang, T. Minari, T. Miyadera, Y. Aoyagi, and K. Tsukagoshi, Appl. Phys. Lett. 92, 063305 (2008).
http://dx.doi.org/10.1063/1.2844857
21.
21. H. Sirringhaus, Adv. Mater. 21, 3859 (2009).
http://dx.doi.org/10.1002/adma.200901136
22.
22. S. D. Wang, T. Minari, T. Miyadera, K. Tsukagoshi, and Y. Aoyagi, Appl. Phys. Lett. 91, 203508 (2007).
http://dx.doi.org/10.1063/1.2813640
23.
23. T. Richards and H. Sirringhaus, Appl. Phys. Lett. 92, 023512 (2008).
http://dx.doi.org/10.1063/1.2825584
24.
24. Y. Yan, X. J. She, H. Zhu, and S. D. Wang, Org. Electron. 12, 823 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.02.019
25.
25. L. Zhang, D. Taguchi, T. Manaka, and M. Iwamoto, Appl. Phys. Lett. 100, 103301 (2012).
http://dx.doi.org/10.1063/1.3692581
26.
26. P. Deng, Y. Yan, S. D. Wang, and Q. Zhang, Chem. Commun. 48, 2591 (2012).
http://dx.doi.org/10.1039/c2cc17272k
27.
27. R. Ruiz, D. Choudhary, B. Nickel, T. Toccoli, K. C. Chang, A. C. Mayer, P. Clancy, J. M. Blakely, R. L. Headrick, S. Iannotta, and G. G. Malliaras, Chem. Mater. 16, 4497 (2004).
http://dx.doi.org/10.1021/cm049563q
28.
28. H. L. Cheng, Y. S. Mai, W. Y. Chou, L. R. Chang, and X. W. Liang, Adv. Funct. Mater. 17, 3639 (2007).
http://dx.doi.org/10.1002/adfm.200700207
29.
29. H. Zhu, Q. L. Li, X. J. She, and S. D. Wang, Appl. Phys. Lett. 98, 243304 (2011).
http://dx.doi.org/10.1063/1.3599579
30.
30. N. Hiroshiba, R. Hayakawa, M. Petit, T. Chikyow, K. Matsuishi, and Y. Wakayama, Thin Solid Films 518, 441 (2009).
http://dx.doi.org/10.1016/j.tsf.2009.07.050
31.
31. R. Ruiz, A. Papadimitratos, A. C. Mayer, and G. G. Malliaras, Adv. Mater. 17, 1795 (2005).
http://dx.doi.org/10.1002/adma.200402077
32.
32. C. S. Chiang, S. Martin, J. Kanicki, Y. Ugai, T. Yukawa, and S. Takeuchi, Jpn. J. Appl. Phys., Part 1 37, 5914 (1998).
http://dx.doi.org/10.1143/JJAP.37.5914
33.
33. S. D. Wang, Y. Yan, and K. Tsukagoshi, Appl. Phys. Lett. 97, 063307 (2010).
http://dx.doi.org/10.1063/1.3479531
34.
34. T. J. Richards and H. Sirringhaus, J. Appl. Phys. 102, 094510 (2007).
http://dx.doi.org/10.1063/1.2804288
35.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/103/7/10.1063/1.4818644
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Device structure of ambipolar OFETs employing NTFBII/pentacene active layers, where molecular structures of NTFBII and pentacene are shown. (b) Transfer characteristics in linear regime of an ambipolar OFET based on NTFBII (16 nm)/pentacene (2 nm). Output characteristics of the device shown in Fig. 1(b) in (c) positive and (d) negative drain bias range.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Pentacene thickness ( nm) dependence of RMS roughness on bottom pentacene (circle) surface and on top NTFBII (16 nm, square) surface. Atomic force microscopy images of 16-nm-thick NTFBII films grown on pentacene with different pentacene thicknesses of (b) 2 nm, (c) 4 nm, (d) 8 nm, and (e) 12 nm.

Image of FIG. 3.

Click to view

FIG. 3.

Transfer characteristics (round scan) in linear regime of ambipolar OFETs employing NTFBII (16 nm)/pentacene ( = 2, 4, 8, or 12 nm) active layers, whose device structure is shown in Fig. 1(a) . Arrows refer to scan direction of gate bias.

Image of FIG. 4.

Click to view

FIG. 4.

Normalized bias stress induced instability (a) in n-channel (NTFBII) at electron accumulation state and (b) in p-channel (pentacene) at hole accumulation state of ambipolar OFETs employing NTFBII (16 nm)/pentacene ( nm) active layers. Dashed curves denote reference data of corresponding unipolar OFETs with NTFBII (16 nm) or pentacene (16 nm) single active layer.

Image of FIG. 5.

Click to view

FIG. 5.

(a) Channel width normalized contact resistance (square and circle) and contact resistivity (diamond and triangle) of ambipolar OFETs employing NTFBII (16 nm)/pentacene ( nm) active layers, where data for electron injection and for hole injection were obtained at electron accumulation state (  = 40 V,  = 3 V) and at hole accumulation state (  = −40 V,  = −3 V), respectively. (b) Gate bias dependence of normalized contact resistance for the device based on NTFBII (16 nm)/pentacene (2 nm). Inset is schematic energy diagram, where work function of Cu, HOMO/LUMO positions of NTFBII and pentacene are shown in eV.

Tables

Generic image for table

Click to view

Table I.

Hole and electron field-effect mobilities and threshold voltages in the ambipolar OFETs shown in Fig. 3 and corresponding unipolar OFETs.

Loading

Article metrics loading...

/content/aip/journal/apl/103/7/10.1063/1.4818644
2013-08-13
2014-04-21

Abstract

The bilayer ambipolar organic field-effect transistors (OFETs) based on 1,8-naphthoylene(trifluoromethylbenzimidazole)-4,5-dicarboxylic acid imide (NTFBII)/pentacene heterojunction have been probed. The origin of the bias stress instability in the top n-channel is attributed to the electron trapping at the NTFBII/pentacene interface, whereas the bias stress effect in the bottom p-channel is associated mainly with the pentacene/dielectric interface. The contact resistances for electron and hole injection are strongly dependent on the local conductivity of the NTFBII and pentacene layers, respectively. The Cu penetration into NTFBII to form direct contact to pentacene is proposed to be the hole injection mechanism in the bilayer ambipolar OFETs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/103/7/1.4818644.html;jsessionid=18c2pct3u7557.x-aip-live-02?itemId=/content/aip/journal/apl/103/7/10.1063/1.4818644&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Probing bias stress effect and contact resistance in bilayer ambipolar organic field-effect transistors
http://aip.metastore.ingenta.com/content/aip/journal/apl/103/7/10.1063/1.4818644
10.1063/1.4818644
SEARCH_EXPAND_ITEM