1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Highly efficient, dual state emission from an organic semiconductor
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/103/9/10.1063/1.4819444
1.
1. C. F. Klingshirn, Semiconductor Optics (Springer Verlag, Heidelberg, 2012).
2.
2. M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals (Oxford University Press, New York, 1999).
3.
3. N. J. Turro, V. Ramamurthy, and J. C. Scaiano, Modern Molecular Photochemistry of Organic Molecules (University Science Books, Sausalito, 2010).
4.
4. Y. Zhang and S. R. Forrest, Phys. Rev. B 84, 241301 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.241301
5.
5. M. Liedtke, A. Sperlich, H. Kraus, A. Baumann, C. Deibel, M. J. M. Wirix, J. Loos, C. M. Cardona, and V. Dyakonov, J. Am. Chem. Soc. 133, 9088 (2011).
http://dx.doi.org/10.1021/ja2025432
6.
6. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature 395, 151 (1998).
http://dx.doi.org/10.1038/25954
7.
7. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, Nature 459, 234 (2009).
http://dx.doi.org/10.1038/nature08003
8.
8. H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, Nature 492, 234 (2012).
http://dx.doi.org/10.1038/nature11687
9.
9. D. Levy and D. Avnir, J. Photochem. Photobiol., A 57, 41 (1991).
http://dx.doi.org/10.1016/1010-6030(91)85006-3
10.
10. H. A. Al-Attar and A. P. Monkman, Adv. Funct. Mater. 22, 3824 (2012).
http://dx.doi.org/10.1002/adfm.201200814
11.
11. M. L. Mueller, X. Yan, J. A. McGuire, and L.-S. Li, Nano Lett. 10, 2679 (2010).
http://dx.doi.org/10.1021/nl101474d
12.
12. S. Hirata, K. Totani, J. Zhang, T. Yamashita, H. Kaji, S. R. Marder, T. Watanabe, and C. Adachi, Adv. Funct. Mater. 23, 3386 (2013).
http://dx.doi.org/10.1002/adfm.201203706
13.
13. A. A. Avdeenko, T. L. Dobrovolskaya, V. A. Kultchitsky, Yu. V. Naboikin, and S. N. Pakulov, J. Lumin. 11, 331 (1976).
http://dx.doi.org/10.1016/0022-2313(76)90017-X
14.
14. G. Oster, N. Geacintov, and A. U. Khan, Nature 196, 1089 (1962).
http://dx.doi.org/10.1038/1961089a0
15.
15. Y. Kawamura, H. Sasabe, and C. Adachi, Jpn. J. Appl. Phys. 43, 7729 (2004).
http://dx.doi.org/10.1143/JJAP.43.7729
16.
16. F. Fennel and S. Lochbrunner, Phys. Rev. B 85, 094203 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.094203
17.
17. R. G. Kepler, P. Avakian, J. C. Caris, and E. Abramson, Phys. Rev. Lett. 10, 400 (1963).
http://dx.doi.org/10.1103/PhysRevLett.10.400
18.
18. S. Reineke, K. Walzer, and K. Leo, Phys. Rev. B 75, 125328 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.125328
19.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/103/9/10.1063/1.4819444
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Energy level diagram indicating all possible rates of (BzP)PB, a biluminescent emitter, showing emission from singlet and triplet states. Chemical structures of PMMA host polymer and (BzP)PB are shown. The subscripts “F” and “P” refer to fluorescence and phosphorescence. Further, “ISC” and “RISC” are intersystem and reverse intersystem crossing, “r” and “nr” radiative and non-radiative, Φ the individual state efficiencies; “SA” denotes singlet absorption in the excited triplet manifold, Δ is the singlet-triplet splitting, and the integrated emission quantum efficiency.

Image of FIG. 2.

Click to view

FIG. 2.

Photoluminescence spectra of (BzP)PB at room temperature (293 K). Black line is the integrated emission obtained cw-illumination. Dotted line represents the total delayed emission consisting of “DF” and phosphorescence (“P”). Prompt F (dashed) and P (dashed-dotted) are obtained from integrated and delayed intensity through consecutive processing steps (see text). Arrows indicate singlet and triplet states. Inset shows the phosphorescence of (BzP)PB obtained at 77 K.

Image of FIG. 3.

Click to view

FIG. 3.

Time-resolved photoluminescence of (BzP)PB. (a) Prompt fluorescence: solid line is a calculated fit based on a bi-exponential decay plus constant background (dotted line) accounting for the delayed emission. Dashed and dashed-dotted lines indicate the components of the prompt fluorescence. (b) Delayed emission: Transient signals following a 120 ms, quasi-cw pump pulse for 293 and 77 K. Dashed (293 K) and dashed-dotted (77 K) lines indicate the phosphorescence contribution. The initial faster decay is “DF”.

Image of FIG. 4.

Click to view

FIG. 4.

Pump duration dependency of photoluminescence quantum yield (to the left of the vertical dashed line at  = 0) and triplet population (to the right). Arrows are indicating increasing pump duration. Maximum value obtained for short durations and at the beginning of the long pulses is 93%. The steady state is 74%.

Loading

Article metrics loading...

/content/aip/journal/apl/103/9/10.1063/1.4819444
2013-08-26
2014-04-21

Abstract

We report highly efficient, simultaneous fluorescence and phosphorescence (74% yield) at room temperature from a single molecule ensemble of (BzP)PB [N,N′-bis(4-benzoyl-phenyl)-N,N′-diphenyl-benzidine] dispersed into a polymer host. The slow phosphorescence (208 ms lifetime) is very efficient (50%) at room temperature and only possible because the non-radiative rate for the triplet state is extremely low (2.4 × 10 s). The ability of an organic molecule to function as an efficient dual state emitter at room temperature is unusual and enables a wide range of applications including the use as broadband down-conversion emitters, optical sensors and attenuators, exciton probes, and spin-independent intermediates for Förster resonant energy transfer.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/103/9/1.4819444.html;jsessionid=9g7nufa6dof44.x-aip-live-01?itemId=/content/aip/journal/apl/103/9/10.1063/1.4819444&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Highly efficient, dual state emission from an organic semiconductor
http://aip.metastore.ingenta.com/content/aip/journal/apl/103/9/10.1063/1.4819444
10.1063/1.4819444
SEARCH_EXPAND_ITEM