1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/104/1/10.1063/1.4834358
1.
1. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nat. Nanotechnol. 7, 699 (2012).
http://dx.doi.org/10.1038/nnano.2012.193
2.
2. K. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.136805
3.
3. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, Nano Lett. 10, 1271 (2010).
http://dx.doi.org/10.1021/nl903868w
4.
4. K. F. Mak, H. Ke, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, Nature Mater. 12, 207211 (2013).
http://dx.doi.org/10.1038/nmat3505
5.
5. J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, Nat. Commun. 4, 1474 (2013).
http://dx.doi.org/10.1038/ncomms2498
6.
6. S. Tongay, J. Zhou, C. Ataca, K. Lo, T. S. Matthews, J. Li, J. C. Grossman, and J. Wu, Nano Lett. 12, 5576 (2012).
http://dx.doi.org/10.1021/nl302584w
7.
7. S. Tongay, J. Zhou, C. Ataca, J. Liu, J. S. Kang, T. S. Matthews, L. You, J. Li, J. C. Grossman, and J. Wu, Nano Lett. 13, 2831 (2013).
http://dx.doi.org/10.1021/nl4011172
8.
8. H.-K. Komsa, S. Kurasch, O. Lehtinen, U. Kaiser, and A. V. Krasheninnikov, Phys. Rev. B 88, 035301 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.035301
9.
9. S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou et al., Sci. Rep. 3, 2657 (2013).
http://dx.doi.org/10.1038/srep02657
10.
10. H. J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund, S. T. Pantelides, and K. I. Bolontin, Nano Lett. 13(8 ), 36263630 (2013).
http://dx.doi.org/10.1021/nl4014748
11.
11. J. Kang, S. Tongay, J. Li, and J. Wu, J. Appl. Phys. 113, 143703 (2013).
http://dx.doi.org/10.1063/1.4799126
12.
12. H.-P. Komsa and A. V. Krasheninnikov, J. Phys. Chem. Lett. 3, 3652 (2012).
http://dx.doi.org/10.1021/jz301673x
13.
13. Y. Chen, C. Xi, D. O. Dumcenco, Z. Liu, K. Suenaga, D. Wang, Z. Shuai, Y. S. Huang, and L. Xie, ACS Nano 7(5 ), 46104616 (2013).
http://dx.doi.org/10.1021/nn401420h
14.
14. H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu, and F. M. Peeters, Phys. Rev. B 87, 165409 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.165409
15.
15. W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. H. Tan, and G. Eda, ACS Nano 7, 791 (2013).
http://dx.doi.org/10.1021/nn305275h
16.
16. S.-H. Wei, S. B. Zhang, and A. Zunger, J. Appl. Phys. 87, 1304 (2000).
http://dx.doi.org/10.1063/1.372014
17.
17. C. Ataca, H. Sahin, and S. Ciraci, J. Phys. Chem. C 116, 89838999 (2012).
http://dx.doi.org/10.1021/jp212558p
18.
18. J. Kang, S. Tongay, J. Zhou, J. Li, and J. Wu, Appl. Phys. Lett. 102, 012111 (2013).
http://dx.doi.org/10.1063/1.4774090
19.
19. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
20.
20. G. Kresse and F. Furthmuller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
21.
21. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
22.
22. A. Zunger, S.-H. Wei, L. G. Ferreira, and J. E. Bernard, Phys. Rev. Lett. 65, 353 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.353
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/1/10.1063/1.4834358
Loading
/content/aip/journal/apl/104/1/10.1063/1.4834358
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/104/1/10.1063/1.4834358
2014-01-02
2015-05-26

Abstract

Monolayer Mo WSe (x = 0, 0.14, 0.75, and 1) alloys were experimentally realized from synthesized crystals. Mo WSe monolayers are direct bandgap semiconductors displaying high luminescence and are stable in ambient. The bandgap values can be tuned by varying the W composition. Interestingly, the bandgap values do not scale linearly with composition. Such non-linearity is attributed to localization of conduction band minimum states around Mo d orbitals, whereas the valence band maximum states are uniformly distributed among W and Mo d orbitals. Results introduce monolayer Mo WSe alloys with different gap values, and open a venue for broadening the materials library and applications of two-dimensional semiconductors.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/104/1/1.4834358.html;jsessionid=2egjx663jx9y9.x-aip-live-06?itemId=/content/aip/journal/apl/104/1/10.1063/1.4834358&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Two-dimensional semiconductor alloys: Monolayer Mo1−xWxSe2
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/1/10.1063/1.4834358
10.1063/1.4834358
SEARCH_EXPAND_ITEM