1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Using the Seebeck coefficient to determine charge carrier concentration, mobility, and relaxation time in InAs nanowires
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/104/1/10.1063/1.4858936
1.
1. C.-H. Lee, G.-C. Yi, Y. M. Zuev, and P. Kim, Appl. Phys. Lett. 94, 022106 (2009).
http://dx.doi.org/10.1063/1.3067868
2.
2. P. M. Wu, J. Gooth, X. Zianni, S. F. Svensson, J. G. Gluschke, K. A. Dick, C. Thelander, K. Nielsch, and H. Linke, Nano Lett. 13, 4080 (2013).
http://dx.doi.org/10.1021/nl401501j
3.
3. N. Preissler, O. Bierwagen, A. T. Ramu, and J. S. Speck, Phys. Rev. B 88, 085305 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.085305
4.
4. C. L. Foiles, “ Thermopower at low temperatures,” in Springer Materials - The Landolt-Börnstein Database edited by K.-H. Hellwege and J. L. Olsons (Springer, Berlin, Heidelberg, 1985), Vol. 15b, Chap. 3.4, p. 60.
5.
5. S. Karg, P. Mensch, B. Gotsmann, H. Schmid, P. D. Kanungo, H. Ghoneim, V. Schmidt, M. T. Björk, V. Troncale, and H. Riel, J. Electron. Mater. 42, 24092414 (2013).
http://dx.doi.org/10.1007/s11664-012-2409-7
6.
6. P. Mensch, S. Karg, B. Gotsmann, P. D. Kanungo, V. Schmidt, V. Troncale, H. Schmid, and H. Riel, in Proceedings of ESSDERC Conference, Bucharest, Romania (2013), pp. 252254.
7.
7. K. Brennan and K. Hess, Solid-State Electron. 27, 347 (1984).
http://dx.doi.org/10.1016/0038-1101(84)90168-0
8.
8. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).
http://dx.doi.org/10.1063/1.1368156
9.
9. D. L. Rode, Phys. Rev. B 3, 3287 (1971).
http://dx.doi.org/10.1103/PhysRevB.3.3287
10.
10. H. Ghoneim, P. Mensch, H. Schmid, C. D. Bessire, R. Rhyner, A. Schenk, C. Rettner, S. Karg, K. E. Moselund, H. Riel, and M. T. Björk, Nanotechnology 23, 505708 (2012).
http://dx.doi.org/10.1088/0957-4484/23/50/505708
11.
11. A. Lin, J. N. Shapiro, A. C. Scofield, B. L. Lang, and D. L. Huffaker, Appl. Phys. Lett 102, 053115 (2013).
http://dx.doi.org/10.1063/1.4791592
12.
12. T. Bryllert, L.-E. Wernerson, L. E. Fröberg, and L. Samuelson, IEEE Electron Device Lett. 27, 323325 (2006).
http://dx.doi.org/10.1109/LED.2006.873371
13.
13. S. A. Dayeh, D. P. R. Aplin, X. Zhou, P. K. L. Yu, E. T. Yu, and D. Wang, Small 3, 326332 (2007).
http://dx.doi.org/10.1002/smll.200600379
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/1/10.1063/1.4858936
Loading
/content/aip/journal/apl/104/1/10.1063/1.4858936
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/104/1/10.1063/1.4858936
2014-01-10
2014-10-01

Abstract

A method for determining charge carrier concentration, mobility, and relaxation time in semiconducting nanowires is presented. The method is based on measuring both the electrical conductivity and the Seebeck coefficient of the nanowire. With knowledge on the bandstructure of the material, Fermi level and charge carrier concentration can be deduced from the Seebeck coefficient. The ratio of measured conductivity and inferred charge carrier concentration then leads to the mobility, and using the Fermi level dependence of mobility one can finally obtain the relaxation time. Using this approach we exemplarily analyze the characteristics of an n-type InAs nanowire.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/104/1/1.4858936.html;jsessionid=1qh7nae9pbfxd.x-aip-live-03?itemId=/content/aip/journal/apl/104/1/10.1063/1.4858936&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Using the Seebeck coefficient to determine charge carrier concentration, mobility, and relaxation time in InAs nanowires
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/1/10.1063/1.4858936
10.1063/1.4858936
SEARCH_EXPAND_ITEM