Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/104/1/10.1063/1.4861115
1.
1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Frisov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
2.
2. P. H. S. Wong and D. Akinwande, Carbon Nanotube and Graphene Device Physics (Cambridge University Press, 2011).
3.
3. V. K. Arora, M. L. P. Tan, and C. Gupta, J. Appl. Phys. 112, 114330 (2012).
http://dx.doi.org/10.1063/1.4769300
4.
4. M. C. Lemme, T. J. Echtermayer, M. Baus, and H. Kurz, IEEE Electron Device Lett. 28, 282 (2007).
http://dx.doi.org/10.1109/LED.2007.891668
5.
5. J.-H. Chen, C. Jang, S. Xiao, M. Isigami, and M. Fuhrer, Nat. Nanotechnol. 3, 206 (2008).
http://dx.doi.org/10.1038/nnano.2008.58
6.
6. F. Xia, V. Perebeinos, Y.-M. Lin, Y. Wu, and P. Avouris, Nat. Nanotechnol. 6, 179 (2011).
http://dx.doi.org/10.1038/nnano.2011.6
7.
7. Z. Guo, R. Dong, P. S. Chakraborty, N. Lourenco, J. Palmer, Y. Hu, M. Ruan, J. Hankinson, J. Kunc, J. D. Cressler, C. Berger, and W. A. de Heer, Nano Lett. 13, 942 (2013).
http://dx.doi.org/10.1021/nl303587r
8.
8. R. Cheng, J. Bai, L. Liao, H. Zhou, Y. Chen, L. Liu, Y.-C. Lin, S. Jiang, Y. Huang, and X. Duan, Proc. Natl. Acad. Sci. 109, 11588 (2012).
http://dx.doi.org/10.1073/pnas.1205696109
9.
9. G. Liu, S. Rumyantsev, M. S. Shur, and A. A. Balandin, Appl. Phys. Lett. 102, 093111 (2013).
http://dx.doi.org/10.1063/1.4794843
10.
10. M. Pospieszalski, IEEE Trans. Microwave Theory Tech. 37, 1340 (1989).
http://dx.doi.org/10.1109/22.32217
11.
11. R. A. Pucel, W. Struble, R. Hallgren, and U. L. Rohde, IEEE Trans. Microwave Theory Tech. 40, 2013 (1992).
http://dx.doi.org/10.1109/22.168758
12.
12. M. A. Andersson, O. Habibpour, J. Vukusic, and J. Stake, Electron. Lett. 48, 861 (2012).
http://dx.doi.org/10.1049/el.2012.1347
13.
13. M. A. Andersson, O. Habibpour, J. Vukusic, and J. Stake, IEEE Trans. Microwave Theory Tech. 60, 4035 (2012).
http://dx.doi.org/10.1109/TMTT.2012.2221141
14.
14. R. A. Pucel, H. A. Haus, and H. Statz, Adv. Electron. Electron Phys. 38, 195 (1975).
http://dx.doi.org/10.1016/S0065-2539(08)61205-6
15.
15. J. Sun, N. Lindvall, M. T. Cole, K. T. T. Angel, W. Teng, K. B. K. Teo, D. H. C. Chua, J. Liu, and A. Yurgens, IEEE Trans. Nanotechnol. 11, 255 (2012).
http://dx.doi.org/10.1109/TNANO.2011.2160729
16.
16. C. J. Lockhart de la Rosa, J. Sun, N. Lindvall, M. T. Cole, Y. Nam, M. Löffler, E. Olsson, K. B. K. Teo, and A. Yurgens, Appl. Phys. Lett. 102, 022101 (2013).
http://dx.doi.org/10.1063/1.4775583
17.
17. V. E. Dorgan, M.-H. Bae, and E. Pop, Appl. Phys. Lett. 97, 082112 (2010).
http://dx.doi.org/10.1063/1.3483130
18.
18. M. A. Andersson, A. Vorobiev, J. Sun, A. Yurgens, S. Gevorgian, and J. Stake, Appl. Phys. Lett. 103, 173111 (2013).
http://dx.doi.org/10.1063/1.4826645
19.
19. M. Berroth and R. Bosch, IEEE Trans. Microwave Theory Tech. 38, 891 (1990).
http://dx.doi.org/10.1109/22.55781
20.
20. A. Cappy, IEEE Trans. Microwave Theory Tech. 36, 1 (1988).
http://dx.doi.org/10.1109/22.3475
21.
21. S. Berciaud, M. Y. Han, K. F. Mak, L. E. Brus, P. Kim, and T. F. Heinz, Phys. Rev. Lett. 104, 227401 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.227401
22.
22. C.-H. Jan, M. Agostinelli, H. Deshpande, M. A. El-Tanani, W. Hafez, U. Jalan, L. Janbay, M. Kang, H. Lakdawala, J. Lin, Y.-L. Lu, S. Mudanai, J. Park, A. Rahman, J. Rizk, W.-K. Shin, K. Soumyanath, H. Tashiro, C. Tsai, P. Vandervoorn, J.-Y. Yeh, and P. Bai, in IEEE International Electron Devices Meeting, 2010.
23.
23. H. Fukui, IEEE Trans. Electron Devices 26, 1032 (1979).
http://dx.doi.org/10.1109/T-ED.1979.19541
24.
24. J. Wenger, IEEE Electron Device Lett. 14, 16 (1993).
http://dx.doi.org/10.1109/55.215086
25.
25. P. Chao, A. J. Tessmer, K. H. G. Duh, P. Ho, M.-Y. Kao, P. Smith, J. Ballingall, S. Liu, and A. Jabra, IEEE Electron Device Lett. 11, 59 (1990).
http://dx.doi.org/10.1109/55.46931
26.
26. A. Konar, T. Fang, and D. Jena, Phys. Rev. B 82, 115452 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.115452
27.
27. V. E. Dorgan, A. Behnam, H. J. Conley, K. I. Bolotin, and E. Pop, Nano Lett. 13, 4581 (2013).
http://dx.doi.org/10.1021/nl400197w
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/1/10.1063/1.4861115
Loading
/content/aip/journal/apl/104/1/10.1063/1.4861115
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/104/1/10.1063/1.4861115
2014-01-02
2016-10-01

Abstract

The microwave noise parameters of graphene field effect transistors (GFETs) fabricated using chemical vapor deposition graphene with gate length in the 2 to 8 GHz range are reported. The obtained minimum noise temperature () is 210 to 610 K for the extrinsic device and 100 to 500 K for the intrinsic GFET after de-embedding the parasitic noise contribution. The GFET noise properties are discussed in relation to FET noise models and the channel carrier transport. Comparison shows that GFETs can reach similar noise levels as contemporary Si CMOS technology provided a successful gate length scaling is performed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/104/1/1.4861115.html;jsessionid=LjFmb945s3ZzzCAhQ1b14Anl.x-aip-live-03?itemId=/content/aip/journal/apl/104/1/10.1063/1.4861115&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/104/1/10.1063/1.4861115&pageURL=http://scitation.aip.org/content/aip/journal/apl/104/1/10.1063/1.4861115'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,