Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Frisov, Science 306, 666 (2004).
2. P. H. S. Wong and D. Akinwande, Carbon Nanotube and Graphene Device Physics (Cambridge University Press, 2011).
3. V. K. Arora, M. L. P. Tan, and C. Gupta, J. Appl. Phys. 112, 114330 (2012).
4. M. C. Lemme, T. J. Echtermayer, M. Baus, and H. Kurz, IEEE Electron Device Lett. 28, 282 (2007).
5. J.-H. Chen, C. Jang, S. Xiao, M. Isigami, and M. Fuhrer, Nat. Nanotechnol. 3, 206 (2008).
6. F. Xia, V. Perebeinos, Y.-M. Lin, Y. Wu, and P. Avouris, Nat. Nanotechnol. 6, 179 (2011).
7. Z. Guo, R. Dong, P. S. Chakraborty, N. Lourenco, J. Palmer, Y. Hu, M. Ruan, J. Hankinson, J. Kunc, J. D. Cressler, C. Berger, and W. A. de Heer, Nano Lett. 13, 942 (2013).
8. R. Cheng, J. Bai, L. Liao, H. Zhou, Y. Chen, L. Liu, Y.-C. Lin, S. Jiang, Y. Huang, and X. Duan, Proc. Natl. Acad. Sci. 109, 11588 (2012).
9. G. Liu, S. Rumyantsev, M. S. Shur, and A. A. Balandin, Appl. Phys. Lett. 102, 093111 (2013).
10. M. Pospieszalski, IEEE Trans. Microwave Theory Tech. 37, 1340 (1989).
11. R. A. Pucel, W. Struble, R. Hallgren, and U. L. Rohde, IEEE Trans. Microwave Theory Tech. 40, 2013 (1992).
12. M. A. Andersson, O. Habibpour, J. Vukusic, and J. Stake, Electron. Lett. 48, 861 (2012).
13. M. A. Andersson, O. Habibpour, J. Vukusic, and J. Stake, IEEE Trans. Microwave Theory Tech. 60, 4035 (2012).
14. R. A. Pucel, H. A. Haus, and H. Statz, Adv. Electron. Electron Phys. 38, 195 (1975).
15. J. Sun, N. Lindvall, M. T. Cole, K. T. T. Angel, W. Teng, K. B. K. Teo, D. H. C. Chua, J. Liu, and A. Yurgens, IEEE Trans. Nanotechnol. 11, 255 (2012).
16. C. J. Lockhart de la Rosa, J. Sun, N. Lindvall, M. T. Cole, Y. Nam, M. Löffler, E. Olsson, K. B. K. Teo, and A. Yurgens, Appl. Phys. Lett. 102, 022101 (2013).
17. V. E. Dorgan, M.-H. Bae, and E. Pop, Appl. Phys. Lett. 97, 082112 (2010).
18. M. A. Andersson, A. Vorobiev, J. Sun, A. Yurgens, S. Gevorgian, and J. Stake, Appl. Phys. Lett. 103, 173111 (2013).
19. M. Berroth and R. Bosch, IEEE Trans. Microwave Theory Tech. 38, 891 (1990).
20. A. Cappy, IEEE Trans. Microwave Theory Tech. 36, 1 (1988).
21. S. Berciaud, M. Y. Han, K. F. Mak, L. E. Brus, P. Kim, and T. F. Heinz, Phys. Rev. Lett. 104, 227401 (2010).
22. C.-H. Jan, M. Agostinelli, H. Deshpande, M. A. El-Tanani, W. Hafez, U. Jalan, L. Janbay, M. Kang, H. Lakdawala, J. Lin, Y.-L. Lu, S. Mudanai, J. Park, A. Rahman, J. Rizk, W.-K. Shin, K. Soumyanath, H. Tashiro, C. Tsai, P. Vandervoorn, J.-Y. Yeh, and P. Bai, in IEEE International Electron Devices Meeting, 2010.
23. H. Fukui, IEEE Trans. Electron Devices 26, 1032 (1979).
24. J. Wenger, IEEE Electron Device Lett. 14, 16 (1993).
25. P. Chao, A. J. Tessmer, K. H. G. Duh, P. Ho, M.-Y. Kao, P. Smith, J. Ballingall, S. Liu, and A. Jabra, IEEE Electron Device Lett. 11, 59 (1990).
26. A. Konar, T. Fang, and D. Jena, Phys. Rev. B 82, 115452 (2010).
27. V. E. Dorgan, A. Behnam, H. J. Conley, K. I. Bolotin, and E. Pop, Nano Lett. 13, 4581 (2013).

Data & Media loading...


Article metrics loading...



The microwave noise parameters of graphene field effect transistors (GFETs) fabricated using chemical vapor deposition graphene with gate length in the 2 to 8 GHz range are reported. The obtained minimum noise temperature () is 210 to 610 K for the extrinsic device and 100 to 500 K for the intrinsic GFET after de-embedding the parasitic noise contribution. The GFET noise properties are discussed in relation to FET noise models and the channel carrier transport. Comparison shows that GFETs can reach similar noise levels as contemporary Si CMOS technology provided a successful gate length scaling is performed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd