Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/104/1/10.1063/1.4861621
1.
1. P. U. Jepsen, D. G. Cooke, and M. Koch, Laser Photonics Rev. 5, 124 (2011).
http://dx.doi.org/10.1002/lpor.201000011
2.
2. A. J. L. Adam, J. Infrared Millim. THz Waves 32, 976 (2011).
http://dx.doi.org/10.1007/s10762-011-9809-2
3.
3. O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, IEEE J. Sel. Top. Quantum Electron. 7, 600 (2001).
http://dx.doi.org/10.1109/2944.974231
4.
4. F. Blanchard, A. Doi, T. Tanaka, and K. Tanaka, Annu. Rev. Mater. Res. 43, 237 (2013).
http://dx.doi.org/10.1146/annurev-matsci-071312-121656
5.
5. Y. Kawano and K. Ishibashi, Nat. Photonics 2, 618 (2008).
http://dx.doi.org/10.1038/nphoton.2008.157
6.
6. A. J. L. Adam, N. C. J. van der Valk, and P. C. M. Planken, J. Opt. Soc. Am. B 24, 1080 (2007).
http://dx.doi.org/10.1364/JOSAB.24.001080
7.
7. K. Moon, Y. Do, M. Lim, G. Lee, H. Kang, K.-S. Park, and H. Han, Appl. Phys. Lett. 101, 011109 (2012).
http://dx.doi.org/10.1063/1.4733475
8.
8. T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. J. Burgess, G. De Los Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, and F. A. Hegmann, Nat. Photonics 7, 620 (2013).
http://dx.doi.org/10.1038/nphoton.2013.151
9.
9. M. Wachter, M. Nagel, and H. Kurz, Appl. Phys. Lett. 95, 041112 (2009).
http://dx.doi.org/10.1063/1.3189702
10.
10. O. Mitrofanov, M. Lee, J. W. P. Hsu, L. N. Pfeifer, K. W. West, J. D. Wynn, and J. F. Federici, Appl. Phys. Lett. 79, 907 (2001).
http://dx.doi.org/10.1063/1.1392303
11.
11. H. Bethe, Phys. Rev. 66, 163 (1944).
http://dx.doi.org/10.1103/PhysRev.66.163
12.
12. C. J. Bouwkamp, Philips Res. Rep. 5, 321 (1950).
13.
13. J. R. Knab, A. J. L. Adam, E. Shaner, H. J. A. J. Starmans, and P. C. M. Planken, Opt. Express 21(1 ), 1101 (2013).
http://dx.doi.org/10.1364/OE.21.001101
14.
14. M. Misra, Y. Pan, C. R. Williams, S. A. Maier, and S. R. Andrews, J. Appl. Phys. 113, 193104 (2013).
http://dx.doi.org/10.1063/1.4804952
15.
15. O. Mitrofanov, I. Brener, M. C. Wanke, R. R. Ruel, J. D. Wynn, A. J. Bruce, and J. Federici, Appl. Phys. Lett. 77, 591 (2000).
http://dx.doi.org/10.1063/1.127054
16.
16. O. Mitrofanov, T. Tan, P. R. Mark, B. Bowden, and J. A. Harrington, Appl. Phys. Lett. 94, 171104 (2009).
http://dx.doi.org/10.1063/1.3126053
17.
17. R. Mueckstein and O. Mitrofanov, Opt. Express 19, 3212 (2011).
http://dx.doi.org/10.1364/OE.19.003212
18.
18. M. Navarro-Cia, C. M. Bledt, M. S. Vitiello, H. E. Beere, D. A. Ritchie, J. A. Harrington, and O. Mitrofanov, J. Opt. Soc. Am. B 30, 127 (2013).
http://dx.doi.org/10.1364/JOSAB.30.000127
19.
19. O. Mitrofanov, L. N. Pfeiffer, and K. W. West, Appl. Phys. Lett. 81, 1579 (2002).
http://dx.doi.org/10.1063/1.1503871
20.
20. A. J. L. Adam, J. M. Brok, M. A. Seo, K. J. Ahn, D. S. Kim, J. H. Kang, Q. H. Park, M. Nagel, and P. C. M. Planken, Opt. Express 16, 7407 (2008).
http://dx.doi.org/10.1364/OE.16.007407
21.
21.See http://www.lumerical.com/tcad-products/fdtd/ for Lumerical Solutions, Inc., Lumerical FDTD Solutions.
22.
22. P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, J. Opt. Soc. Am. B 13, 2424 (1996).
http://dx.doi.org/10.1364/JOSAB.13.002424
23.
23. Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, Appl. Phys. Lett. 71, 2076 (1997).
http://dx.doi.org/10.1063/1.119346
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/1/10.1063/1.4861621
Loading
/content/aip/journal/apl/104/1/10.1063/1.4861621
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/104/1/10.1063/1.4861621
2014-01-08
2016-09-26

Abstract

The transmission of electromagnetic waves through a sub-wavelength aperture is described by Bethe's theory. This imposes severe limitations on using apertures smaller than ∼1/100 of the wavelength for near-field microscopy at terahertz (THz) frequencies. Experimentally, we observe that the transmitted evanescent field within 1 m of the aperture deviates significantly from the Bethe dependence of  ∝  3. Using this effect, we realized THz near-field probes incorporating 3 m apertures and we demonstrate transmission mode THz time-domain near-field imaging with spatial resolution of 3 m, corresponding to λ/100 (at 1 THz).

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/104/1/1.4861621.html;jsessionid=G16lcQlsJO-ylt-P--o4CIor.x-aip-live-02?itemId=/content/aip/journal/apl/104/1/10.1063/1.4861621&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/104/1/10.1063/1.4861621&pageURL=http://scitation.aip.org/content/aip/journal/apl/104/1/10.1063/1.4861621'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,