Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/104/1/10.1063/1.4861779
1.
1. T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, Science 289, 930 (2000).
http://dx.doi.org/10.1126/science.289.5481.930
2.
2. A. Wachowiak, J. Wiebe, M. Bode, O. Pietzsch, M. Morgenstern, and R. Wiesendanger, Science 298, 577 (2002).
http://dx.doi.org/10.1126/science.1075302
3.
3. B. Argyle, E. Terrenzio, and J. Slonczewski, Phys. Rev. Lett. 53, 190 (1984).
http://dx.doi.org/10.1103/PhysRevLett.53.190
4.
4. K. Guslienko, B. Ivanov, V. Novosad, Y. Otani, H. Shima, and K. Fukamichi, J. Appl. Phys. 91, 8037 (2002).
http://dx.doi.org/10.1063/1.1450816
5.
5. B. Van Waeyenberge, A. Puzic, H. Stoll, K. W. Chou, T. Tyliszczak, R. Hertel, M. Fähnle, H. Brückl, K. Rott, G. Reiss, I. Neudecker, D. Weiss, C. H. Back, and G. Schütz, Nature 444, 461 (2006).
http://dx.doi.org/10.1038/nature05240
6.
6. R. Hertel, S. Gliga, M. Fähnle, and C. M. Schneider, Phys. Rev. Lett. 98, 117201 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.117201
7.
7. Q. F. Xiao, J. Rudge, B. C. Choi, Y. K. Hong, and G. Donohoe, Appl. Phys. Lett. 89, 262507 (2006).
http://dx.doi.org/10.1063/1.2424673
8.
8. K. Y. Guslienko, K.-S. Lee, and S.-K. Kim, Phys. Rev. Lett. 100, 027203 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.027203
9.
9. A. Vansteenkiste, K. W. Chou, M. Weigand, M. Curcic, V. Sackmann, H. Stoll, T. Tyliszczak, G. Woltersdorf, C. H. Back, G. Schütz, and B. Van Waeyenberge, Nat. Phys. 5, 332 (2009).
http://dx.doi.org/10.1038/nphys1231
10.
10. M. Curcic, B. Van Waeyenberge, A. Vansteenkiste, M. Weigand, V. Sackmann, H. Stoll, M. Faehnle, T. Tyliszczak, G. Woltersdorf, C. H. Back, and G. Schütz, Phys. Rev. Lett. 101, 197204 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.197204
11.
11. M. Weigand, B. Van Waeyenberge, A. Vansteenkiste, M. Curcic, V. Sackmann, H. Stoll, T. Tyliszczak, K. Kaznatcheev, D. Bertwistle, G. Woltersdorf, C. H. Back, and G. Schütz, Phys. Rev. Lett. 102, 077201 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.077201
12.
12. K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, H. Kohno, A. Thiaville, and T. Ono, Nature Mater. 6, 270 (2007).
http://dx.doi.org/10.1038/nmat1867
13.
13. K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, and T. Ono, Appl. Phys. Lett. 93, 152502 (2008).
http://dx.doi.org/10.1063/1.3001588
14.
14. B. Ivanov, H. Schnitzer, F. Mertens, and G. Wysin, Phys. Rev. B 58, 8464 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.8464
15.
15. C. Zaspel, B. Ivanov, J. Park, and P. Crowell, Phys. Rev. B 72, 024427 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.024427
16.
16. J. Park and P. Crowell, Phys. Rev. Lett. 95, 167201 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.167201
17.
17. X. Zhu, Z. Liu, V. Metlushko, P. Grutter, and M. Freeman, Phys. Rev. B 71, 180408 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.180408
18.
18. F. Hoffmann, G. Woltersdorf, K. Perzlmaier, A. N. Slavin, V. S. Tiberkevich, A. Bischof, D. Weiss, and C. H. Back, Phys. Rev. B 76, 014416 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.014416
19.
19. K. Y. Guslienko, A. N. Slavin, V. Tiberkevich, and S.-K. Kim, Phys. Rev. Lett. 101, 247203 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.247203
20.
20. K. Y. Guslienko, G. R. Aranda, and J. M. Gonzalez, Phys. Rev. B 81, 014414 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.014414
21.
21. M. Kammerer, M. Weigand, M. Curcic, M. Noske, M. Sproll, A. Vansteenkiste, B. Van Waeyenberge, H. Stoll, G. Woltersdorf, C. H. Back, and G. Schütz, Nat. Commun. 2, 279 (2011).
http://dx.doi.org/10.1038/ncomms1277
22.
22. M. Kammerer, H. Stoll, M. Noske, M. Sproll, M. Weigand, C. Illg, G. Woltersdorf, M. Fähnle, C. Back, and G. Schütz, Phys. Rev. B 86, 134426 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.134426
23.
23. M. Kammerer, M. Sproll, H. Stoll, M. Noske, M. Weigand, C. Illg, M. Fähnle, and G. Schütz, Appl. Phys. Lett. 102, 012404 (2013).
http://dx.doi.org/10.1063/1.4773592
24.
24. M. Kammerer, Ph.D. thesis, University of Stuttgart, 2011.
25.
25. M. Curcic, H. Stoll, M. Weigand, V. Sackmann, P. Jüllig, M. Kammerer, M. Noske, M. Sproll, B. Van Waeyenberge, A. Vansteenkiste, G. Woltersdorf, T. Tyliszczak, and G. Schütz, Phys. Status Solidi B 248, 2317 (2011).
http://dx.doi.org/10.1002/pssb.201147208
26.
26. M. J. Donahue and D. G. Porter, OOMMF User's Guide, Version 1.0 (Interagency Report NISTIR 6376, National Institute of Standards and Technology, Gaithersburg, MD, 1999).
27.
27. A. Vansteenkiste, M. Weigand, M. Curcic, H. Stoll, G. Schuetz, and B. Van Waeyenberge, New J. Phys. 11, 063006 (2009).
http://dx.doi.org/10.1088/1367-2630/11/6/063006
28.
28. M. Bolte, G. Meier, B. Krüger, A. Drews, R. Eiselt, L. Bocklage, S. Bohlens, T. Tyliszczak, A. Vansteenkiste, B. Van Waeyenberge, K. W. Chou, A. Puzic, and H. Stoll, Phys. Rev. Lett. 100, 176601 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.176601
29.
29. S.-K. Kim, K.-S. Lee, Y.-S. Yu, and Y.-S. Choi, Appl. Phys. Lett. 92, 022509 (2008).
http://dx.doi.org/10.1063/1.2807274
30.
30. K. Nakano, D. Chiba, N. Ohshima, S. Kasai, T. Sato, Y. Nakatani, K. Sekiguchi, K. Kobayashi, and T. Ono, Appl. Phys. Lett. 99, 262505 (2011).
http://dx.doi.org/10.1063/1.3673303
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/1/10.1063/1.4861779
Loading
/content/aip/journal/apl/104/1/10.1063/1.4861779
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/104/1/10.1063/1.4861779
2014-01-09
2016-09-30

Abstract

We show, by experiments and micromagnetic simulations in vortex structures, that an active “dual frequency” excitation of both the sub-GHz vortex gyromode and multi-GHz spin waves considerably changes the frequency response of spin wave mediated vortex core reversal. Besides additional minima in the switching threshold, a significant broadband reduction of the switching amplitudes is observed, which can be explained by non-linear interaction between the vortex gyromode and the spin waves. We conclude that the well known frequency spectra of azimuthal spin waves in vortex structures are altered substantially, when the vortex gyromode is actively excited simultaneously.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/104/1/1.4861779.html;jsessionid=XGvChcmIcs75fxAn--A44ZlP.x-aip-live-03?itemId=/content/aip/journal/apl/104/1/10.1063/1.4861779&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/104/1/10.1063/1.4861779&pageURL=http://scitation.aip.org/content/aip/journal/apl/104/1/10.1063/1.4861779'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,