1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Single-friction-surface triboelectric generator with human body conduit
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/104/10/10.1063/1.4868130
1.
1. Z. L. Wang, Adv. Mater. 24, 280 (2012).
http://dx.doi.org/10.1002/adma.201102958
2.
2. P. D. Mitcheson, E. M. Yeatman, G. K. Rao, A. S. Holmes, and T. C. Green, Proc. IEEE 96, 1457 (2008).
http://dx.doi.org/10.1109/JPROC.2008.927494
3.
3. Z. L. Wang and J. H. Song, Science 312, 242 (2006).
http://dx.doi.org/10.1126/science.1124005
4.
4. C. Chang, V. H. Tran, J. B. Wang, Y. K. Fuh, and L. W. Lin, Nano Lett. 10, 726 (2010).
http://dx.doi.org/10.1021/nl9040719
5.
5. J. D. Chen, D. Chen, T. Yuan, and X. Chen, Appl. Phys. Lett. 100, 213509 (2012).
http://dx.doi.org/10.1063/1.4722814
6.
6. B. Yang, C. Lee, W. F. Xiang, J. Xie, J. H. He, R. K. Kotlanka, S. P. Low, and H. H. Feng, J. Micromech. Microeng. 19, 035001 (2009).
http://dx.doi.org/10.1088/0960-1317/19/3/035001
7.
7. Y. Suzuki, IEEJ Trans. Electr. Electron. Eng. 6, 101 (2011).
http://dx.doi.org/10.1002/tee.20631
8.
8. L. G. W. Tvedt, D. S. Nguyen, and E. Halvorsen, J. Microelectromech. Syst. 19, 305 (2010).
http://dx.doi.org/10.1109/JMEMS.2009.2039017
9.
9. H. T. Baytekin, A. Z. Patashinski, M. Branicki, B. Baytekin, S. Soh, and B. A. Grzybowski, Science 333, 308 (2011).
http://dx.doi.org/10.1126/science.1201512
10.
10. L. B. Schein, Science 316, 1572 (2007).
http://dx.doi.org/10.1126/science.1142325
11.
11. Z. L. Wang, ACS Nano 7, 9533 (2013).
http://dx.doi.org/10.1021/nn404614z
12.
12. B. Meng, W. Tang, Z. H. Too, X. S. Zhang, M. D. Han, W. Liu, and H. X. Zhang, Energy Environ. Sci. 6, 3235 (2013).
http://dx.doi.org/10.1039/c3ee42311e
13.
13. F. R. Fan, Z. Q. Tian, and Z. L. Wang, Nano Energy 1, 328 (2012).
http://dx.doi.org/10.1016/j.nanoen.2012.01.004
14.
14. S. H. Wang, L. Lin, and Z. L. Wang, Nano Lett. 12, 6339 (2012).
http://dx.doi.org/10.1021/nl303573d
15.
15. X. S. Zhang, M. D. Han, R. X. Wang, F. Y. Zhu, Z. H. Li, W. Wang, and H. X. Zhang, Nano Lett. 13, 1168 (2013).
http://dx.doi.org/10.1021/nl3045684
16.
16. G. Zhu, Z. H. Lin, Q. S. Jing, P. Bai, C. F. Pan, Y. Yang, Y. S. Zhou, and Z. L. Wang, Nano Lett. 13, 847 (2013).
http://dx.doi.org/10.1021/nl4001053
17.
17. G. Zhu, J. Chen, Y. Liu, P. Bai, Y. S. Zhou, Q. Jing, C. Pan, and Z. L. Wang, Nano Lett. 13, 2282 (2013).
http://dx.doi.org/10.1021/nl4008985
18.
18. S. Wang, L. Lin, Y. Xie, Q. Jing, S. Niu, and Z. L. Wang, Nano Lett. 13, 2226 (2013).
http://dx.doi.org/10.1021/nl400738p
19.
19. Y. Yang, H. Zhang, J. Chen, Q. Jing, Y. S. Zhou, X. Wen, and Z. L. Wang, ACS Nano 7, 7342 (2013).
http://dx.doi.org/10.1021/nn403021m
20.
20. Y. Yang, Y. S. Zhou, H. Zhang, Y. Liu, S. Lee, and Z. L. Wang, Adv. Mater. 25, 6594 (2013).
http://dx.doi.org/10.1002/adma.201302453
21.
21. Y. Yang, H. Zhang, Z. H. Lin, Y. S. Zhou, Q. Jing, Y. Su, J. Yang, J. Chen, C. Hu, and Z. L. Wang, ACS Nano 7, 9213 (2013).
http://dx.doi.org/10.1021/nn403838y
22.
22. W. Tang, B. Meng, and H. X. Zhang, Nano Energy 2, 1164 (2013).
http://dx.doi.org/10.1016/j.nanoen.2013.04.009
23.
23. B. Meng, W. Tang, X. S. Zhang, M. D. Han, W. Liu, and H. X. Zhang, Nano Energy 2, 1101 (2013).
http://dx.doi.org/10.1016/j.nanoen.2013.08.006
24.
24. S. Niu, S. Wang, L. Lin, Y. Liu, Y. S. Zhou, Y. Hu, and Z. L. Wang, Energy Environ. Sci. 6, 3576 (2013).
http://dx.doi.org/10.1039/c3ee42571a
25.
25. S. Roundy, P. K. Wright, and K. S. J. Pister, in Proceedings of the IMECE2002, New Orleans (2002), p. 34309.
26.
26. M. A. Kelly, G. E. Servais, and T. V. Pfaffenbach, in Proceedings of the 19th International Symposium for Testing and Failure Analysis, Los Angeles (1993), pp. 167173.
27.
27.See supplementary material at http://dx.doi.org/10.1063/1.4868130 for the difference in performance when the reference electrode is grounded and replaced by a large conductor plate. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/10/10.1063/1.4868130
Loading
/content/aip/journal/apl/104/10/10.1063/1.4868130
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/104/10/10.1063/1.4868130
2014-03-11
2015-04-27

Abstract

We present a transparent single-friction-surface triboelectric generator (STEG) employing human body as the conduit, making the applications of STEG in portable electronics much more practical and leading to a significant output improvement. The STEG with micro-patterned polydimethylsiloxane surface achieved an output voltage of over 200 V with a current density of 4.7 A/cm2. With human body conduit, the output current increased by 39% and the amount of charge that transferred increased by 34% compared to the results with grounded electrode. A larger increment of 210% and 81% was obtained in the case of STEG with a large-size flat polyethylene terephthalate surface.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/104/10/1.4868130.html;jsessionid=dheihf5c4tr1m.x-aip-live-03?itemId=/content/aip/journal/apl/104/10/10.1063/1.4868130&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Single-friction-surface triboelectric generator with human body conduit
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/10/10.1063/1.4868130
10.1063/1.4868130
SEARCH_EXPAND_ITEM