1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/104/11/10.1063/1.4868880
1.
1. P. Würfel, Physics of Solar Cells: From Principles to New Concepts (Wiley, Weinheim, Germany, 2005).
2.
2. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Prog. Photovoltaics: Res. Appl. 21, 1 (2013).
http://dx.doi.org/10.1002/pip.2352
3.
3. M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, IEEE J. Photovoltaics 4, 96 (2014).
http://dx.doi.org/10.1109/JPHOTOV.2013.2282737
4.
4. S. De Wolf, A. Descoeudres, Z. C. Holman, and C. Ballif, Green 2, 724 (2012).
http://dx.doi.org/10.1515/green-2011-0018
5.
5. Z. C. Holman, A. Descoeudres, L. Barraud, F. Z. Fernandez, J. P. Seif, S. De Wolf, and C. Ballif, IEEE J. Photovoltaics 2, 715 (2012).
http://dx.doi.org/10.1109/JPHOTOV.2011.2174967
6.
6. S. Y. Herasimenka, W. J. Dauksher, and S. G. Bowden, Appl. Phys. Lett. 103, 053511 (2013).
http://dx.doi.org/10.1063/1.4817723
7.
7. J. P. Seif, A. Descoeudres, M. Filipic, F. Smole, M. Topic, Z. C. Holman, S. De Wolf, and C. Ballif, J. Appl. Phys. 115, 024502 (2014).
http://dx.doi.org/10.1063/1.4861404
8.
8. H. Fujiwara, T. Kaneko, and M. Kondo, Appl. Phys. Lett. 91, 133508 (2007).
http://dx.doi.org/10.1063/1.2790815
9.
9. D. Pysch, M. Bivour, M. Hermle, and S. W. Glunz, Thin Solid Films 519, 25502554 (2011).
http://dx.doi.org/10.1016/j.tsf.2010.12.028
10.
10. T. Mueller, S. Schwertheim, M. Scherff, and W. R. Fahrner, Appl. Phys. Lett. 92, 033504 (2008).
http://dx.doi.org/10.1063/1.2837192
11.
11. J. Meyer, S. Hamwi, M. Kröger, W. Kowalsky, T. Riedl, and A. Kahn, Adv. Mater. 24, 54085427 (2012).
http://dx.doi.org/10.1002/adma.201201630
12.
12. M. T. Greiner, M. G. Helander, W.-M. Tang, Z.-B. Wang, J. Qiu, and Z.-H. Lu, Nature Mater. 11, 76 (2012).
http://dx.doi.org/10.1038/nmat3159
13.
13. S. Tokito, K. Noda, and Y. Taga, J. Phys. D: Appl. Phys. 29, 27502753 (1996).
http://dx.doi.org/10.1088/0022-3727/29/11/004
14.
14. C. Battaglia, X. Yin, M. Zheng, I. D. Sharp, T. Chen, S. McDonnell, A. Azcatl, C. Carraro, R. Maboudian, R. M. Wallace, and A. Javey, Nano Lett. 14, 967971 (2014).
http://dx.doi.org/10.1021/nl404389u
15.
15. W. Kern and D. A. Puotinen, RCA Rev. 31, 187 (1970).
16.
16. A. Descoeudres, L. Barraud, S. De Wolf, B. Strahm, D. Lachenal, C. Buerin, Z. C. Holman, F. Zicarelli, B. Demaurex, J. Seif, J. Holovsky, and C. Ballif, Appl. Phys. Lett. 99, 123506 (2011).
http://dx.doi.org/10.1063/1.3641899
17.
17. C. Battaglia, L. Erni, M. Boccard, L. Barraud, J. Escarré, K. Söderström, G. Bugnon, A. Billet, L. Ding, M. Despeisse, F.-J. Haug, S. De Wolf, and C. Ballif, J. Appl. Phys. 109, 114501 (2011).
http://dx.doi.org/10.1063/1.3592885
18.
18. L. Barraud, Z. C. Holman, N. Badel, P. Reiss, A. Descoeudres, C. Battaglia, S. De Wolf, and C. Ballif, Sol. Energy Mater. Sol. Cells 115, 151156 (2013).
http://dx.doi.org/10.1016/j.solmat.2013.03.024
19.
19. Z. C. Holman, M. Filipic, A. Descoeudres, S. De Wolf, F. Smole, M. Topic, and C. Ballif, J. Appl. Phys. 113, 013107 (2013).
http://dx.doi.org/10.1063/1.4772975
20.
20. R. Varache, J. P. Kleider, W. Favre, and L. Korte, J. Appl. Phys. 112, 123717 (2012).
http://dx.doi.org/10.1063/1.4769736
21.
21. C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F.-J. Haug, M. Despeisse, and C. Ballif, Nano Lett. 11, 661 (2011).
http://dx.doi.org/10.1021/nl1037787
22.
22. M. Despeisse, C. Battaglia, M. Boccard, G. Bugnon, M. Charrière, P. Cuony, S. Hänni, L. Löfgren, F. Meillaud, G. Parascandolo, T. Söderström, and C. Ballif, Phys. Status Solidi A 208, 18631868 (2011).
http://dx.doi.org/10.1002/pssa.201026745
23.
23. C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, ACS Nano 6, 2790 (2012).
http://dx.doi.org/10.1021/nn300287j
24.
24. R. A. Sinton and A. Cuevas, Appl. Phys. Lett. 69, 25102512 (1996).
http://dx.doi.org/10.1063/1.117723
25.
25. S. Olibet, Ph.D. thesis, Université de Neuchâtel, Neuchâtel, 2008.
26.
26. A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, Phys. Rev. B 86, 165202 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.165202
27.
27. B. Demaurex, S. De Wolf, A. Descoeudres, Z. C. Holman, and C. Ballif, Appl. Phys. Lett. 101, 171604 (2012).
http://dx.doi.org/10.1063/1.4764529
28.
28. E. Yablonovitch, D. L. Allara, C. C. Chang, T. Gmitter, and T. B. Bright, Phys. Rev. Lett. 57, 249 (1986).
http://dx.doi.org/10.1103/PhysRevLett.57.249
29.
29. T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, IEEE Trans. Electron Devices 31, 711 (1984).
http://dx.doi.org/10.1109/T-ED.1984.21594
30.
30. M. C. Alonso García and J. L. Balenzategui, Renewable Energy 29, 1997 (2004).
http://dx.doi.org/10.1016/j.renene.2004.03.010
31.
31. S. Chuang, C. Battaglia, A. Azcatl, S. McDonnell, J. S. Kang, X. Yin, M. Tosun, R. Kapadia, H. Fang, R. M. Wallace, and A. Javey, Nano Lett. 14, 13371342 (2014).
http://dx.doi.org/10.1021/nl4043505
32.
32. M. J. Kerr and A. Cuevas, Sol. Energy 76, 263267 (2004).
http://dx.doi.org/10.1016/j.solener.2003.07.027
33.
33. H. B. Michaelson, J. Appl. Phys. 48, 4729 (1977).
http://dx.doi.org/10.1063/1.323539
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/11/10.1063/1.4868880
Loading
/content/aip/journal/apl/104/11/10.1063/1.4868880
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/104/11/10.1063/1.4868880
2014-03-17
2015-03-31

Abstract

We explore substoichiometric molybdenum trioxide (MoO, x < 3) as a dopant-free, hole-selective contact for silicon solar cells. Using an intrinsic hydrogenated amorphous silicon passivation layer between the oxide and the silicon absorber, we demonstrate a high open-circuit voltage of 711 mV and power conversion efficiency of 18.8%. Due to the wide band gap of MoO, we observe a substantial gain in photocurrent of 1.9 mA/cm2 in the ultraviolet and visible part of the solar spectrum, when compared to a p-type amorphous silicon emitter of a traditional silicon heterojunction cell. Our results emphasize the strong potential for oxides as carrier selective heterojunction partners to inorganic semiconductors.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/104/11/1.4868880.html;jsessionid=580iowvbbfd1h.x-aip-live-06?itemId=/content/aip/journal/apl/104/11/10.1063/1.4868880&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Silicon heterojunction solar cell with passivated hole selective MoOx contact
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/11/10.1063/1.4868880
10.1063/1.4868880
SEARCH_EXPAND_ITEM