1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Absorber and gain chip optimization to improve performance from a passively modelocked electrically pumped vertical external cavity surface emitting laser
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/104/12/10.1063/1.4870048
1.
1. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, IEEE Photonics Technol. Lett. 9(8), 10631065 (1997).
http://dx.doi.org/10.1109/68.605500
2.
2. B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, Electron. Lett. 48(9), 516517 (2012).
http://dx.doi.org/10.1049/el.2012.0531
3.
3. U. Keller, Nature 424, 831838 (2003).
http://dx.doi.org/10.1038/nature01938
4.
4. U. Keller and A. C. Tropper, Phys. Rep. 429(2), 67120 (2006).
http://dx.doi.org/10.1016/j.physrep.2006.03.004
5.
5. D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, IEEE J. Quantum Electron. 42(8), 838847 (2006).
http://dx.doi.org/10.1109/JQE.2006.878183
6.
6. A. H. Quarterman, K. G. Wilcox, S. P. Elsmere, Z. Mihoubi, and A. C. Tropper, Electron. Lett. 44(19), 11351137 (2008).
http://dx.doi.org/10.1049/el:20081452
7.
7. V. J. Wittwer, C. A. Zaugg, W. P. Pallmann, A. E. H. Oehler, B. Rudin, M. Hoffmann, M. Golling, Y. Barbarin, T. Sudmeyer, and U. Keller, IEEE Photonics J. 3(4), 658664 (2011).
http://dx.doi.org/10.1109/JPHOT.2011.2160050
8.
8. C. A. Zaugg, A. Klenner, O. D. Sieber, M. Golling, B. W. Tilma, and U. Keller, paper presented at the CLEO, Session CW1G.6, San Jose, California, 2013.
9.
9. K. G. Wilcox, A. H. Quarterman, V. Apostolopoulos, H. E. Beere, I. Farrer, D. A. Ritchie, and A. C. Tropper, Opt. Express 20(7), 70407045 (2012).
http://dx.doi.org/10.1364/OE.20.007040
10.
10. A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, Nat. Photonics 3(12), 729 (2009).
http://dx.doi.org/10.1038/nphoton.2009.216
11.
11. P. Klopp, U. Griebner, M. Zorn, and M. Weyers, Appl. Phys. Lett. 98(7), 071103 (2011).
http://dx.doi.org/10.1063/1.3554751
12.
12. M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, and U. Keller, Opt. Express 19(9), 81088116 (2011).
http://dx.doi.org/10.1364/OE.19.008108
13.
13. K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, Opt. Express 21(2), 15991605 (2013).
http://dx.doi.org/10.1364/OE.21.001599
14.
14. M. Scheller, T. L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, Electron. Lett. 48(10), 588589 (2012).
http://dx.doi.org/10.1049/el.2012.0749
15.
15. S. Ranta, A. Häkönen, T. Leinonen, L. Orsila, J. Lyytikäinen, G. N. Steinmeyer, and M. Guina, Opt. Lett. 38(13), 22892291 (2013).
http://dx.doi.org/10.1364/OL.38.002289
16.
16. R. Bek, H. Kahle, T. Schwarzbäck, M. Jetter, and P. Michler, Appl. Phys. Lett. 103(24), 242101 (2013).
http://dx.doi.org/10.1063/1.4835855
17.
17. J. Rautiainen, V.-M. Korpijärvi, J. Puustinen, M. Guina, and O. G. Okhotnikov, Opt. Express 16(20), 15964 (2008).
http://dx.doi.org/10.1364/OE.16.015964
18.
18. A. Härkönen, J. Rautiainen, L. Orsila, M. Guina, K. Rößner, M. Hümmer, T. Lehnhardt, M. Müller, A. Forchel, M. Fischer, J. Koeth, and O. G. Okhotnikov, IEEE Photonics Technol. Lett. 20(15), 13321334 (2008).
http://dx.doi.org/10.1109/LPT.2008.926921
19.
19. D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, and U. Keller, Appl. Phys. B 88, 493497 (2007).
http://dx.doi.org/10.1007/s00340-007-2760-1
20.
20. B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, Opt. Express 18(26), 2758227588 (2010).
http://dx.doi.org/10.1364/OE.18.027582
21.
21. M. Mangold, V. J. Wittwer, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, and U. Keller, Opt. Express 21(21), 2490424911 (2013).
http://dx.doi.org/10.1364/OE.21.024904
22.
22. M. Mangold, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, and U. Keller, Opt. Express 22(5), 60996107 (2014).
http://dx.doi.org/10.1364/OE.22.006099
23.
23. M. Mangold, S. M. Link, A. Klenner, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, IEEE Photonics J. 6(1), 19 (2014).
http://dx.doi.org/10.1109/JPHOT.2013.2295464
24.
24. J. G. McInerney, A. Mooradian, A. Lewis, A. V. Shchegrov, E. M. Strzelecka, D. Lee, J. P. Watson, M. Liebman, G. P. Carey, B. D. Cantos, W. R. Hitchens, and D. Heald, Electron. Lett. 39(6), 523525 (2003).
http://dx.doi.org/10.1049/el:20030300
25.
25. Y. Barbarin, M. Hoffmann, W. P. Pallmann, I. Dahhan, P. Kreuter, M. Miller, J. Baier, H. Moench, M. Golling, T. Südmeyer, B. Witzigmann, and U. Keller, IEEE J. Sel. Top. Quantum Electron. 17(6), 17791786 (2011).
http://dx.doi.org/10.1109/JSTQE.2011.2107313
26.
26. A. Harkonen, A. Bachmann, S. Arafin, K. Haring, J. Viheriala, M. Guina, and M.-C. Amann, paper presented at the SPIE Photonics Europe, Session 772015–772017, Brussels, Belgium, 2010.
27.
27. C. Wilmsen, H. Temkin, and L. A. Coldren, Vertical-Cavity Surface-Emitting Lasers (Cambridge University Press, 1999).
28.
28. E. W. Young, K. D. Choquette, S. L. Chuang, K. M. Geib, A. J. Fischer, and A. A. Allerman, IEEE Photonics Technol. Lett. 13(9), 927929 (2001).
http://dx.doi.org/10.1109/68.942649
29.
29. W. P. Pallmann, C. A. Zaugg, M. Mangold, I. Dahhan, M. Golling, B. W. Tilma, B. Witzigmann, and U. Keller, IEEE Photonics J. 5(4), 1501207 (2013).
http://dx.doi.org/10.1109/JPHOT.2013.2274773
30.
30. K. Jasim, Q. Zhang, A. V. Nurmikko, A. Mooradian, G. Carey, W. Ha, and E. Ippen, Electron. Lett. 39(4), 373375 (2003).
http://dx.doi.org/10.1049/el:20030240
31.
31. K. Jasim, Q. Zhang, A. V. Nurmikko, E. Ippen, A. Mooradian, G. Carey, and W. Ha, Electron. Lett. 40(1), 3435 (2004).
http://dx.doi.org/10.1049/el:20040024
32.
32. W. P. Pallmann, C. A. Zaugg, M. Mangold, V. J. Wittwer, H. Moench, S. Gronenborn, M. Miller, B. W. Tilma, T. Südmeyer, and U. Keller, Opt. Express 20, 2479124802 (2012).
http://dx.doi.org/10.1364/OE.20.024791
33.
33. H. Moench, A. Andreadaki, S. Gronenborn, J. S. Kolb, P. Loosen, M. Miller, T. Schwarz, A. M. Van Der Lee, and U. Weichmann, paper presented at the SPIE Photonics West, San Francisco, 2014.
34.
34. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. B. Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, Nat. Photonics 5(6), 364371 (2011).
http://dx.doi.org/10.1038/nphoton.2011.74
35.
35. K. J. Weingarten, M. J. W. Rodwell, and D. M. Bloom, IEEE J. Quantum Electron. 24, 198220 (1988).
http://dx.doi.org/10.1109/3.115
36.
36. D. A. B. Miller, IEEE J. Sel. Top. Quantum Electron. 6, 13121317 (2000).
http://dx.doi.org/10.1109/2944.902184
37.
37. G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schon, and U. Keller, Appl. Phys. B 81(1), 2732 (2005).
http://dx.doi.org/10.1007/s00340-005-1879-1
38.
38. C. A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. S. Kulmala, R. S. Sundaram, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, Opt. Express 21(25), 3154831559 (2013).
http://dx.doi.org/10.1364/OE.21.031548
39.
39. M. Mangold, V. J. Wittwer, O. D. Sieber, M. Hoffmann, I. L. Krestnikov, D. A. Livshits, M. Golling, T. Südmeyer, and U. Keller, Opt. Express 20(4), 41364148 (2012).
http://dx.doi.org/10.1364/OE.20.004136
40.
40. O. Sieber, M. Hoffmann, V. Wittwer, M. Mangold, M. Golling, B. Tilma, T. Sudmeyer, and U. Keller, Appl. Phys. B 113, 133 (2013).
http://dx.doi.org/10.1007/s00340-013-5449-7
41.
41. D. J. H. C. Maas, B. Rudin, A.-R. Bellancourt, D. Iwaniuk, S. V. Marchese, T. Südmeyer, and U. Keller, Opt. Express 16(10), 75717579 (2008).
http://dx.doi.org/10.1364/OE.16.007571
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/12/10.1063/1.4870048
Loading
/content/aip/journal/apl/104/12/10.1063/1.4870048
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/104/12/10.1063/1.4870048
2014-03-28
2014-10-24

Abstract

We present an electrically pumped vertical-external-cavity surface-emitting laser (EP-VECSEL) modelocked with a semiconductor saturable absorber mirror (SESAM) with significantly improved performance. In different cavity configurations, we present the shortest pulses (2.5 ps), highest average output power (53.2 mW), highest repetition rate (18.2 GHz), and highest peak power (4.7 W) to date. The simple and low-cost concept of EP-VECSELs is very attractive for mass-market applications such as optical communication and clocking. The improvements result from an optimized gain chip from Philips Technologie GmbH and a SESAM, specifically designed for EP-VECSELs. For the gain chip, we found a better trade-off between electrical and optical losses with an optimized doping scheme in the substrate to increase the average output power. Furthermore, the device's bottom contact diameter (60 m) is smaller than the oxide aperture diameter (100 m), which favors electro-optical conversion into a TEM mode. Compared to optically pumped VECSELs we have to increase the field enhancement in the active region of an EP-VECSEL which requires a SESAM with lower saturation fluence and higher modulation depth for modelocking. We therefore used a resonant quantum well SESAM with a 3.5-pair dielectric top-coating (SiN and SiO) to enhance the field in the absorber at the lasing wavelength of 980 nm. The absorption bandedge at room temperature is detuned (965 nm) compared to the resonance (980 nm), which enables temperature-tuning of the modulation depth and saturation fluence from approximately 2.5% up to 15% and from 20 J/cm2 to 1.1 J/cm2, respectively.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/104/12/1.4870048.html;jsessionid=2j2sye10swh6o.x-aip-live-03?itemId=/content/aip/journal/apl/104/12/10.1063/1.4870048&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Absorber and gain chip optimization to improve performance from a passively modelocked electrically pumped vertical external cavity surface emitting laser
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/12/10.1063/1.4870048
10.1063/1.4870048
SEARCH_EXPAND_ITEM