Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. F. Schaffler, Semicond. Sci. Technol. 12(12), 15151549 (1997).
2. K. Sawano, H. Satoh, Y. Kunishi, K. Nakagawa, and Y. Shiraki, Semicond. Sci. Technol. 22(1), S161S163 (2007).
3. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).
4. T. M. Lu, C.-H. Lee, S.-H. Huang, D. C. Tsui, and C. W. Liu, Appl. Phys. Lett. 99(15), 153510 (2011).
5. S.-H. Huang, T.-M. Lu, S.-C. Lu, C.-H. Lee, C. W. Liu and D. C. Tsui, Appl. Phys. Lett. 101(4), 042111 (2012).
6. H. von Kanel, D. Chrastina, B. Rossner, G. Isella, J. P. Hague, and M. Bollani, Microelectron. Eng. 76(1-4), 279284 (2004).
7. H. von Kanel, M. Kummer, G. Isella, E. Muller, and T. Hackbarth, Appl. Phys. Lett. 80(16), 29222924 (2002).
8. B. Rossner, D. Chrastina, G. Isella, and H. von Kanel, Appl. Phys. Lett. 84(16), 30583060 (2004).
9. T. Irisawa, H. Miura, T. Ueno, and Y. Shiraki, Jpn. J. Appl. Phys., Part 1 40(4B), 26942696 (2001).
10. M. Myronov, T. Irisawa, O. A. Mironov, S. Koh, Y. Shiraki, T. E. Whall, and E. H. C. Parker, Appl. Phys. Lett. 80(17), 31173119 (2002).
11. M. Myronov, K. Sawano, Y. Shiraki, T. Mouri, and K. M. Itoh, Appl. Phys. Lett. 91(8), 082108 (2007).
12. A. Dobbie, M. Myronov, R. J. H. Morris, A. H. A. Hassan, M. J. Prest, V. A. Shah, E. H. C. Parker, T. E. Whall, and D. R. Leadley, Appl. Phys. Lett. 101(17), 172108 (2012).
13. A. H. A. Hassan, O. A. Mironov, A. Feher, E. Cizmar, S. Gabani, R. J. H. Morris, A. Dobbie, V. A. Shah, M. Myronov, L. B. Berkutoy, V. V. Andrieyskii, and D. R. Leadley, in International Conference on Ultimate Integration on Silicon (ULIS-14), Warwick, March 2013.
14. V. A. Shah, A. Dobbie, M. Myronov, D. J. F. Fulgoni, L. J. Nash, and D. R. Leadley, Appl. Phys. Lett. 93(19), 192103 (2008).
15. M. Myronov, A. Dobbie, V. A. Shah, X. C. Liu, V. H. Nguyen, and D. R. Leadley, Electrochem. Solid State Lett. 13(11), H388H390 (2010).
16. V. A. Shah, A. Dobbie, M. Myronov, and D. R. Leadley, J. Appl. Phys. 107(6), 064304 (2010).
17. O. Bierwagen, R. Pomraenke, S. Eilers, and W. T. Masselink, Phys. Rev. B 70(16), 165307 (2004).
18. N. Martin, J. Sauget, and T. Nyberg, Mater. Lett. 105(0), 2023 (2013).
19. A. M. Savin, C. B. Soerensen, O. P. Hansen, N. Y. Minina, and M. Henini, Semicond. Sci. Technol. 14(7), 632 (1999).
20. T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54(2), 437672 (1982).
21. Y. Markus, U. Meirav, H. Shtrikman, and B. Laikhtman, Semicond. Sci. Technol. 9(7), 1297 (1994).
22. R. Neumann, K. Brunner, and G. Abstreiter, Physica E 13(2–4), 986989 (2002).
23. R. Neumann, J. Zhu, K. Brunner, and G. Abstreiter, Thin Solid Films 380(1–2), 124126 (2000).
24. H. Lichtenberger, M. Mühlberger, C. Schelling, and F. Schäffler, J. Cryst. Growth 278(1–4), 7882 (2005).
25. C. J. Emeleus, T. E. Whall, D. W. Smith, R. A. Kubiak, E. H. C. Parker, and M. J. Kearney, J. Appl. Phys. 73(8), 38523856 (1993).
26. K. Lee, M. S. Shur, T. J. Drummond, and H. Morkoc, J. Appl. Phys. 54(11), 64326438 (1983).
27. J. Lee, H. N. Spector, and V. K. Arora, J. Appl. Phys. 54(12), 69957004 (1983).
28. K. Hess, Appl. Phys. Lett. 35(7), 484486 (1979).
29. D. Monroe, Y. H. Xie, E. A. Fitzgerald, P. J. Silverman, and G. P. Watson, J. Vac. Sci. Technol., B 11(4), 17311737 (1993).
30. A. H. A. Hassan, “ Transport properties for pure strained Ge quantum well,” Ph.D. thesis, University of Warwick, 2014.

Data & Media loading...


Article metrics loading...



In this paper, we report on anisotropic transport properties of strained germanium (sGe) quantum wells grown on Si (001) substrates with p-type doping beneath the sGe channel. Mobility measurements were made along orthogonal [110] directions. The level of measured resistivity anisotropy in the and orientations was found to vary between 2 and 9 for different samples. This corresponds to an actual mobility anisotropy ratio of between 1.3 and 2, values that are significantly higher than previously found for sGe. From modeling of the low temperature (12 K) mobility, using the relaxation time approach, the anisotropy in mobility was accounted for by a difference in interface roughness scattering between the two orientations. For the orientation, a step height of Δ = 0.28 nm and interface roughness periodicity of λ = 7 nm were found while for the orientation, λ reduced to 4 nm and Δ increased to 0.42 nm. High-resolution X-ray diffraction and transmission electron microscopy confirmed a 1° off-cut in the wafer towards the direction.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd