NOTICE: Scitation Maintenance Tuesday, May 5, 2015

Scitation will be unavailable on Tuesday, May 5, 2015 between 3:00 AM and 4:00 AM EST due to planned network maintenance.

Thank you for your patience during this process.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
Rendering graphene supports hydrophilic with non-covalent aromatic functionalization for transmission electron microscopy
Rent this article for
Access full text Article
1. R. A. Grassucci, D. J. Taylor, and J. Frank, Nat. Protoc. 2, 3239 (2007).
2. R. Henderson, Ultramicroscopy 46, 1 (1992).
3. R. M. Glaeser and R. J. Hall, Biophys. J. 100, 2331 (2011).
4. N. Gyobu, K. Tani, Y. Hiroaki, A. Kamegawa, K. Mitsuoka, and Y. Fujiyoshi, J. Struct. Biol. 146, 325 (2004).
5. A. Miyazawa, Y. Fujiyoshi, M. Stowell, and N. Unwin, J. Mol. Biol. 288, 765 (1999).
6. K. Mitsuoka, Micron 42, 100 (2011).
7. P. D. Abeyrathne, M. Chami, R. S. Pantelic, K. N. Goldie, and H. Stahlberg, Preparation of 2D Crystals of Membrane Proteins for High-Resolution Electron Crystallography Data Collection, 1st ed. (Elsevier Inc., 2010), Chap. I, pp. 2543.
8. D. M. Larson, K. H. Downing, and R. M. Glaeser, J. Struct. Biol. 174, 420 (2011).
9. J. Brink, H. Gross, P. Tittmann, M. B. Sherman, and W. Chiu, J. Microsc. 191, 67 (1998).
10. U. Jakubowski, W. Baumeister, and R. M. Glaeser, Ultramicroscopy 31, 351 (1989).
11. R. M. Glaeser and K. H. Downing, Microsc. Microanal. 10, 790 (2004).
12. K. Sader, M. Stopps, L. J. Calder, and P. B. Rosenthal, J. Struct. Biol. 183, 531 (2013).
13. R. S. Pantelic, J. W. Suk, Y. Hao, R. S. Ruoff, and H. Stahlberg, Nano Lett. 11, 4319 (2011).
14. R. S. Pantelic, J. C. Meyer, U. Kaiser, and H. Stahlberg, Solid State Commun. 152, 1375 (2012).
15. R. S. Pantelic, J. W. Suk, C. W. Magnuson, J. C. Meyer, P. Wachsmuth, U. Kaiser, R. S. Ruoff, and H. Stahlberg, J. Struct. Biol. 174, 234 (2011).
16. G. Eda, G. Fanchini, and M. Chhowalla, Nat. Nanotechnol. 3, 270 (2008).
17. J. H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, and M. Ishigami, Nat. Phys. 4, 377 (2008).
18. J. Robertson, Adv. Phys. 35, 317 (1986).
19. K. Ziegler, Phys. Rev. Lett. 97, 266802 (2006).
20. H. B. Heersche, P. Jarillo-Herrero, J. B. Oostinga, L. M. K. Vandersypen, and A. F. Morpurgo, Nature 446, 56 (2007).
21. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).
22. R. S. Pantelic, J. C. Meyer, U. Kaiser, W. Baumeister, and J. M. Plitzko, J. Struct. Biol. 170, 152 (2010).
23. J. Y. Mutus, L. Livadaru, J. T. Robinson, R. Urban, M. H. Salomons, M. Cloutier, and R. A. Wolkow, New J. Phys. 13, 063011 (2011).
24. W. H. Massover, Micron 42, 141 (2011).
25. Z. Liu, L. Jiang, F. Galli, I. Nederlof, R. C. L. Olsthoorn, G. E. M. Lamers, T. H. Oosterkamp, and J. P. Abrahams, Adv. Funct. Mater. 20, 2857 (2010).
26. J. Jeon, M. S. Lodge, B. D. Dawson, M. Ishigami, F. Shewmaker, and B. Chen, Biochim. Biophys. Acta, Gen. Subj. 1830, 3807 (2013).
27. A. Cerf, T. Alava, R. A. Barton, and H. G. Craighead, Nano Lett. 11, 4232 (2011).
28. S. Buckhout-White, J. T. Robinson, N. D. Bassim, E. R. Goldman, I. L. Medintz, and M. G. Ancona, Soft Matter 9, 1414 (2013).
29. J. L. P. Benesch, B. T. Ruotolo, D. A. Simmons, N. P. Barrera, N. Morgner, L. Wang, H. R. Saibil, and C. V. Robinson, J. Struct. Biol. 172, 161 (2010).
30. D. Rhinow, M. Büenfeld, N. E. Weber, A. Beyer, A. Gölzhäuser, W. Kühlbrandt, N. Hampp, and A. Turchanin, Ultramicroscopy 111, 342 (2011).
31. D. Rhinow, N. E. Weber, A. Turchanin, A. Gölzhäuser, and W. Kühlbrandt, Appl. Phys. Lett. 99, 133701 (2011).
32. C. A. Hunter, K. R. Lawson, J. Perkins, and C. J. Urch, J. Chem. Soc., Perkin Trans. 2, 651 (2001).
33. X. Dong, D. Fu, W. Fang, Y. Shi, P. Chen, and L.-J. Li, Small 5, 1422 (2009).
34. X. Dong, Y. Shi, Y. Zhao, D. Chen, J. Ye, Y. Yao, F. Gao, Z. Ni, T. Yu, Z. Shen, Y. Huang, P. Chen, and L.-J. Li, Phys. Rev. Lett. 102, 135501EP (2009).
35. D. Parviz, S. Das, H. S. T. Ahmed, F. Irin, S. Bhattacharia, and M. J. Green, ACS Nano 6, 8857 (2012).
36. S. Ghosh, X. An, R. Shah, D. Rawat, B. Dave, S. Kar, and S. Talapatra, J. Phys. Chem. C 116, 20688 (2012).
37. X. An, T. Simmons, R. Shah, C. Wolfe, K. M. Lewis, M. Washington, S. K. Nayak, S. Talapatra, and S. Kar, Nano Lett. 10, 4295 (2010).
38. T. J. Simmons, J. Bult, D. P. Hashim, R. J. Linhardt, and P. M. Ajayan, ACS Nano 3, 865 (2009).
39. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324, 1312 (2009).
40. W. Fu, C. Nef, O. Knopfmacher, A. Tarasov, M. Weiss, M. Calame, and C. Schoünenberger, Nano Lett. 11, 3597 (2011).
41. C. Casiraghi, S. Pisana, K. S. Novoselov, A. K. Geim, and A. C. Ferrari, Appl. Phys. Lett. 91, 233108 (2007).
42. K. Gopalakrishnan, H. M. Joshi, P. Kumar, L. S. Panchakarla, and C. N. R. Rao, Chem. Phys. Lett. 511, 304 (2011).
43. Y. Miyajima, M. Shkunov, and S. R. P. Silva, Appl. Phys. Lett. 95, 102102 (2009).
44. H.-C. Cheng, R.-J. Shiue, C.-C. Tsai, W.-H. Wang, and Y.-T. Chen, ACS Nano 5, 2051 (2011).
45. R. J. Chen, Y. Zhang, D. Wang, and H. Dai, J. Am. Chem. Soc. 123, 3838 (2001).

Data & Media loading...


Article metrics loading...



Amorphous carbon films have been routinely used to enhance the preparation of frozen-hydrated samples for transmission electron microscopy (TEM), either in retaining protein concentration, providing mechanical stability or dissipating sample charge. However, strong background signal from the amorphous carbon support obstructs that of the sample, and the insulating properties of thin amorphous carbon films preclude any efficiency in dispersing charge. Graphene addresses the limitations of amorphous carbon. Graphene is a crystalline material with virtually no phase or amplitude contrast and unparalleled, high electrical carrier mobility. However, the hydrophobic properties of graphene have prevented its routine application in Cryo-TEM. This Letter reports a method for rendering graphene TEM supports hydrophilic—a convenient approach maintaining graphene's structural and electrical properties based on non-covalent, aromatic functionalization.


Full text loading...

This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Rendering graphene supports hydrophilic with non-covalent aromatic functionalization for transmission electron microscopy