1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Rendering graphene supports hydrophilic with non-covalent aromatic functionalization for transmission electron microscopy
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/104/13/10.1063/1.4870531
1.
1. R. A. Grassucci, D. J. Taylor, and J. Frank, Nat. Protoc. 2, 3239 (2007).
http://dx.doi.org/10.1038/nprot.2007.452
2.
2. R. Henderson, Ultramicroscopy 46, 1 (1992).
http://dx.doi.org/10.1016/0304-3991(92)90003-3
3.
3. R. M. Glaeser and R. J. Hall, Biophys. J. 100, 2331 (2011).
http://dx.doi.org/10.1016/j.bpj.2011.04.018
4.
4. N. Gyobu, K. Tani, Y. Hiroaki, A. Kamegawa, K. Mitsuoka, and Y. Fujiyoshi, J. Struct. Biol. 146, 325 (2004).
http://dx.doi.org/10.1016/j.jsb.2004.01.012
5.
5. A. Miyazawa, Y. Fujiyoshi, M. Stowell, and N. Unwin, J. Mol. Biol. 288, 765 (1999).
http://dx.doi.org/10.1006/jmbi.1999.2721
6.
6. K. Mitsuoka, Micron 42, 100 (2011).
http://dx.doi.org/10.1016/j.micron.2010.08.006
7.
7. P. D. Abeyrathne, M. Chami, R. S. Pantelic, K. N. Goldie, and H. Stahlberg, Preparation of 2D Crystals of Membrane Proteins for High-Resolution Electron Crystallography Data Collection, 1st ed. (Elsevier Inc., 2010), Chap. I, pp. 2543.
8.
8. D. M. Larson, K. H. Downing, and R. M. Glaeser, J. Struct. Biol. 174, 420 (2011).
http://dx.doi.org/10.1016/j.jsb.2011.02.005
9.
9. J. Brink, H. Gross, P. Tittmann, M. B. Sherman, and W. Chiu, J. Microsc. 191, 67 (1998).
http://dx.doi.org/10.1046/j.1365-2818.1998.00342.x
10.
10. U. Jakubowski, W. Baumeister, and R. M. Glaeser, Ultramicroscopy 31, 351 (1989).
http://dx.doi.org/10.1016/0304-3991(89)90333-1
11.
11. R. M. Glaeser and K. H. Downing, Microsc. Microanal. 10, 790 (2004).
http://dx.doi.org/10.1017/S1431927604040668
12.
12. K. Sader, M. Stopps, L. J. Calder, and P. B. Rosenthal, J. Struct. Biol. 183, 531 (2013).
http://dx.doi.org/10.1016/j.jsb.2013.04.014
13.
13. R. S. Pantelic, J. W. Suk, Y. Hao, R. S. Ruoff, and H. Stahlberg, Nano Lett. 11, 4319 (2011).
http://dx.doi.org/10.1021/nl202386p
14.
14. R. S. Pantelic, J. C. Meyer, U. Kaiser, and H. Stahlberg, Solid State Commun. 152, 1375 (2012).
http://dx.doi.org/10.1016/j.ssc.2012.04.038
15.
15. R. S. Pantelic, J. W. Suk, C. W. Magnuson, J. C. Meyer, P. Wachsmuth, U. Kaiser, R. S. Ruoff, and H. Stahlberg, J. Struct. Biol. 174, 234 (2011).
http://dx.doi.org/10.1016/j.jsb.2010.10.002
16.
16. G. Eda, G. Fanchini, and M. Chhowalla, Nat. Nanotechnol. 3, 270 (2008).
http://dx.doi.org/10.1038/nnano.2008.83
17.
17. J. H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, and M. Ishigami, Nat. Phys. 4, 377 (2008).
http://dx.doi.org/10.1038/nphys935
18.
18. J. Robertson, Adv. Phys. 35, 317 (1986).
http://dx.doi.org/10.1080/00018738600101911
19.
19. K. Ziegler, Phys. Rev. Lett. 97, 266802 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.266802
20.
20. H. B. Heersche, P. Jarillo-Herrero, J. B. Oostinga, L. M. K. Vandersypen, and A. F. Morpurgo, Nature 446, 56 (2007).
http://dx.doi.org/10.1038/nature05555
21.
21. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).
http://dx.doi.org/10.1038/nature04235
22.
22. R. S. Pantelic, J. C. Meyer, U. Kaiser, W. Baumeister, and J. M. Plitzko, J. Struct. Biol. 170, 152 (2010).
http://dx.doi.org/10.1016/j.jsb.2009.12.020
23.
23. J. Y. Mutus, L. Livadaru, J. T. Robinson, R. Urban, M. H. Salomons, M. Cloutier, and R. A. Wolkow, New J. Phys. 13, 063011 (2011).
http://dx.doi.org/10.1088/1367-2630/13/6/063011
24.
24. W. H. Massover, Micron 42, 141 (2011).
http://dx.doi.org/10.1016/j.micron.2010.05.006
25.
25. Z. Liu, L. Jiang, F. Galli, I. Nederlof, R. C. L. Olsthoorn, G. E. M. Lamers, T. H. Oosterkamp, and J. P. Abrahams, Adv. Funct. Mater. 20, 2857 (2010).
http://dx.doi.org/10.1002/adfm.201000761
26.
26. J. Jeon, M. S. Lodge, B. D. Dawson, M. Ishigami, F. Shewmaker, and B. Chen, Biochim. Biophys. Acta, Gen. Subj. 1830, 3807 (2013).
http://dx.doi.org/10.1016/j.bbagen.2013.03.002
27.
27. A. Cerf, T. Alava, R. A. Barton, and H. G. Craighead, Nano Lett. 11, 4232 (2011).
http://dx.doi.org/10.1021/nl202219w
28.
28. S. Buckhout-White, J. T. Robinson, N. D. Bassim, E. R. Goldman, I. L. Medintz, and M. G. Ancona, Soft Matter 9, 1414 (2013).
http://dx.doi.org/10.1039/c2sm26950c
29.
29. J. L. P. Benesch, B. T. Ruotolo, D. A. Simmons, N. P. Barrera, N. Morgner, L. Wang, H. R. Saibil, and C. V. Robinson, J. Struct. Biol. 172, 161 (2010).
http://dx.doi.org/10.1016/j.jsb.2010.03.004
30.
30. D. Rhinow, M. Büenfeld, N. E. Weber, A. Beyer, A. Gölzhäuser, W. Kühlbrandt, N. Hampp, and A. Turchanin, Ultramicroscopy 111, 342 (2011).
http://dx.doi.org/10.1016/j.ultramic.2011.01.028
31.
31. D. Rhinow, N. E. Weber, A. Turchanin, A. Gölzhäuser, and W. Kühlbrandt, Appl. Phys. Lett. 99, 133701 (2011).
http://dx.doi.org/10.1063/1.3645010
32.
32. C. A. Hunter, K. R. Lawson, J. Perkins, and C. J. Urch, J. Chem. Soc., Perkin Trans. 2, 651 (2001).
http://dx.doi.org/10.1039/b008495f
33.
33. X. Dong, D. Fu, W. Fang, Y. Shi, P. Chen, and L.-J. Li, Small 5, 1422 (2009).
http://dx.doi.org/10.1002/smll.200801711
34.
34. X. Dong, Y. Shi, Y. Zhao, D. Chen, J. Ye, Y. Yao, F. Gao, Z. Ni, T. Yu, Z. Shen, Y. Huang, P. Chen, and L.-J. Li, Phys. Rev. Lett. 102, 135501EP (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.135501
35.
35. D. Parviz, S. Das, H. S. T. Ahmed, F. Irin, S. Bhattacharia, and M. J. Green, ACS Nano 6, 8857 (2012).
http://dx.doi.org/10.1021/nn302784m
36.
36. S. Ghosh, X. An, R. Shah, D. Rawat, B. Dave, S. Kar, and S. Talapatra, J. Phys. Chem. C 116, 20688 (2012).
http://dx.doi.org/10.1021/jp303339f
37.
37. X. An, T. Simmons, R. Shah, C. Wolfe, K. M. Lewis, M. Washington, S. K. Nayak, S. Talapatra, and S. Kar, Nano Lett. 10, 4295 (2010).
http://dx.doi.org/10.1021/nl903557p
38.
38. T. J. Simmons, J. Bult, D. P. Hashim, R. J. Linhardt, and P. M. Ajayan, ACS Nano 3, 865 (2009).
http://dx.doi.org/10.1021/nn800860m
39.
39. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324, 1312 (2009).
http://dx.doi.org/10.1126/science.1171245
40.
40. W. Fu, C. Nef, O. Knopfmacher, A. Tarasov, M. Weiss, M. Calame, and C. Schoünenberger, Nano Lett. 11, 3597 (2011).
http://dx.doi.org/10.1021/nl201332c
41.
41. C. Casiraghi, S. Pisana, K. S. Novoselov, A. K. Geim, and A. C. Ferrari, Appl. Phys. Lett. 91, 233108 (2007).
http://dx.doi.org/10.1063/1.2818692
42.
42. K. Gopalakrishnan, H. M. Joshi, P. Kumar, L. S. Panchakarla, and C. N. R. Rao, Chem. Phys. Lett. 511, 304 (2011).
http://dx.doi.org/10.1016/j.cplett.2011.06.033
43.
43. Y. Miyajima, M. Shkunov, and S. R. P. Silva, Appl. Phys. Lett. 95, 102102 (2009).
http://dx.doi.org/10.1063/1.3224834
44.
44. H.-C. Cheng, R.-J. Shiue, C.-C. Tsai, W.-H. Wang, and Y.-T. Chen, ACS Nano 5, 2051 (2011).
http://dx.doi.org/10.1021/nn103221v
45.
45. R. J. Chen, Y. Zhang, D. Wang, and H. Dai, J. Am. Chem. Soc. 123, 3838 (2001).
http://dx.doi.org/10.1021/ja010172b
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/13/10.1063/1.4870531
Loading
/content/aip/journal/apl/104/13/10.1063/1.4870531
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/104/13/10.1063/1.4870531
2014-04-04
2014-09-22

Abstract

Amorphous carbon films have been routinely used to enhance the preparation of frozen-hydrated samples for transmission electron microscopy (TEM), either in retaining protein concentration, providing mechanical stability or dissipating sample charge. However, strong background signal from the amorphous carbon support obstructs that of the sample, and the insulating properties of thin amorphous carbon films preclude any efficiency in dispersing charge. Graphene addresses the limitations of amorphous carbon. Graphene is a crystalline material with virtually no phase or amplitude contrast and unparalleled, high electrical carrier mobility. However, the hydrophobic properties of graphene have prevented its routine application in Cryo-TEM. This Letter reports a method for rendering graphene TEM supports hydrophilic—a convenient approach maintaining graphene's structural and electrical properties based on non-covalent, aromatic functionalization.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/104/13/1.4870531.html;jsessionid=nwfjhkp27yfu.x-aip-live-02?itemId=/content/aip/journal/apl/104/13/10.1063/1.4870531&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Rendering graphene supports hydrophilic with non-covalent aromatic functionalization for transmission electron microscopy
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/13/10.1063/1.4870531
10.1063/1.4870531
SEARCH_EXPAND_ITEM