Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/104/14/10.1063/1.4870493
1.
1. H. A. Haus and J. R. Melcher, Electromagnetic Fields and Energy (Prentice-Hall, Englewood Cliffs, New Jersey, 1989), Chap 10.
2.
2. F. Wang and L. Xiao, WEPFI082, IPAC13, Shanghai, China, 2013.
3.
3. L. Laurent, S. Tantawi, V. Dolgashev, and C. Nantista, Phys. Rev. Spec. Top.-Accel. Beams 14, 041001 (2011).
http://dx.doi.org/10.1103/PhysRevSTAB.14.041001
4.
4. F. Wang, C. Adolphsen, and C. Nantista, in Proceedings of 2011 Particle Accelerator Conference, TUP139, New York, 2011.
5.
5. D. P. Pritzkau, “ RF Pulsed Heating,” R-577, Ph.D. thesis (SLAC, 2001).
6.
6. C. Adolphsen, G. Bowden, V. Dolgashev, L. Laurent, S. Tantawi, F. Wang, J. W. Wang, S. Doebert, A. Grudiev, G. Riddone et al., in Proceeding of PAC09, SLAC-PUB-13697, 6 June 2009.
7.
7. J. Wang, C. Adolphsen, N. Baboi, G. Bowden, D. L. Burke, J. Cornuelle, V. Dolgashev, K. Jobe, R. M. Jones, B. Kirby et al., SLAC-PUB-10119, 13 August 2003.
8.
8. J. Knobloch, TUA004, paper presented at the Workshop on RF Superconductivity, Santa Fe, New Mexico, USA, 1999.
9.
9. V. Shemelin and H. Padamsee, LEPP Report SRF080903-04, Cornell University, 2008.
10.
10. T. Kubo, e-print arXiv:1308.3311v2 (7 October 2013).
11.
11. Y. Xie, M. Liepe, and G. Hoffstaetter, in Proceeding of IPAC2013, WEPWO071, Shanghai, China.
12.
12. M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Stembach, K. G. West, S. Kittiwatanakul, J. Lu et al., Nature 487(7407), 345348 (2012).
http://dx.doi.org/10.1038/nature11231
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/14/10.1063/1.4870493
Loading
/content/aip/journal/apl/104/14/10.1063/1.4870493
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/104/14/10.1063/1.4870493
2014-04-07
2016-10-01

Abstract

The magnetic field enhancement caused by closely spaced, cylindrical, metallic protrusions in an rf cavity is studied theoretically and compared to field solver results for such micro-structures. It is found that the enhancement between the protrusions can be large when the magnetic field is perpendicular to the gap between them, and that the enhancement increases as this gap is reduced. This mechanism could help explain the observation of melting on normal-conducting cavity surfaces subjected to non-enhanced pulsed heating well below that required to melt the surface material. It could also help explain quenching in superconducting cavities when the nominal magnetic fields are below the critical value.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/104/14/1.4870493.html;jsessionid=0OBvsDFZa0K3kELoB2Mm-eJj.x-aip-live-02?itemId=/content/aip/journal/apl/104/14/10.1063/1.4870493&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/104/14/10.1063/1.4870493&pageURL=http://scitation.aip.org/content/aip/journal/apl/104/14/10.1063/1.4870493'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,