1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Improving the conversion efficiency of Cu2ZnSnS4 solar cell by low pressure sulfurization
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/104/14/10.1063/1.4870508
1.
1. H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, and S. Miyajima, Sol. Energy Mater. Sol. Cells 65, 141 (2001).
http://dx.doi.org/10.1016/S0927-0248(00)00088-X
2.
2. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Prog. Photovoltaics 22, 1 (2014).
http://dx.doi.org/10.1002/pip.2452
3.
3. L. Guo, Y. Zhu, O. Gunawan, T. Gokmen, V. R. Deline, S. Ahmed, L. T. Romankiw, and H. Deligianni, Prog. Photovoltaics 22, 58 (2014).
http://dx.doi.org/10.1002/pip.2332
4.
4. W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, “ Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency,” Adv. Mater. (published online).
http://dx.doi.org/10.1002/aenm.201301465
5.
5. G. M. Ford, Q. J. Guo, R. Agrawal, and H. W. Hillhouse, Chem. Mater. 23, 2626 (2011).
http://dx.doi.org/10.1021/cm2002836
6.
6. S. Ahmed, K. B. Reuter, O. Gunawan, L. Guo, L. T. Romankiw, and H. Deligianni, Adv. Mater. 2, 253 (2012).
http://dx.doi.org/10.1002/aenm.201100526
7.
7. Y. Lin, S. Ikeda, W. Septina, Y. Kawasaki, T. Harada, and M. Matsumura, Sol. Energy Mater Sol. Cells 120, 218 (2014).
http://dx.doi.org/10.1016/j.solmat.2013.09.006
8.
8. G. Brammertz, M. Buffiere, S. Oueslati, H. ElAnzeery, K. B. Messaoud, S. Sahayaraj, C. Koble, M. Meuris, and J. Poortmans, Appl. Phys. Lett. 103, 163904 (2013).
http://dx.doi.org/10.1063/1.4826448
9.
9. S. M. Pawar, A. I. Inamdar, B. S. Pawar, K. V. Gurav, S. W. Shin, Y. J. Xiao, S. S. Kolekar, J. H. Lee, J. H. Kim, and H. Im, Mater. Lett. 118, 76 (2014).
http://dx.doi.org/10.1016/j.matlet.2013.12.047
10.
10. B. A. Schubert, B. Marsen, S. Cinque, T. Unold, R. Klenk, S. Schorr, and H. W. Schock, Prog. Photovoltaics 19, 93 (2011).
http://dx.doi.org/10.1002/pip.976
11.
11. J. J. Scragg, J. T. Watjen, M. Edoff, T. Ericson, T. Kubart, and C. Platzer-Bjorkman, J. Am. Chem. Soc. 134, 19330 (2012).
http://dx.doi.org/10.1021/ja308862n
12.
12. H. Guan, H. Shen, C. Gao, and X. He, J Mater Sci: Mater Electron 24, 2667 (2013).
http://dx.doi.org/10.1007/s10854-013-1153-y
13.
13. P. A. Fernandes, P. M. P. Salomé, A. F. Sartori, J. Malaquias, A. F. Cunha, B. A. Schubert, J. C. González, and G. M. Ribeiro, Sol. Energy Mater Sol. Cells 115, 157 (2013).
http://dx.doi.org/10.1016/j.solmat.2013.03.032
14.
14. A. Emrani, P. Vasekar, and C. R. Westgate, Sol. Energy 98, 335 (2013).
http://dx.doi.org/10.1016/j.solener.2013.09.020
15.
15. K. Maeda, K. Tanaka, Y. Nakano, and H. Uchiki, Jpn. J. Appl. Phys., Part 1 50, 05FB08 (2011).
http://dx.doi.org/10.7567/JJAP.50.05FB08
16.
16. Z. H. Su, K. W. Sun, Z. L. Han, H. T. Cui, F. Y. Liu, Y. Q. Lai, J. Li, X. J. Hao, Y. X. Liu, and M. Green, J. Mater. Chem. A 2, 500 (2014).
http://dx.doi.org/10.1039/c3ta13533k
17.
17. G. Wang, W. Zhao, Y. Cui, Q. Tian, S. Gao, L. Huang, and D. Pan, Appl. Mater. Interfaces 5, 10042 (2013).
http://dx.doi.org/10.1021/am402558a
18.
18. C. Guillén and J. Herrero, Phys. Status Solidi A 203, 2438 (2006).
http://dx.doi.org/10.1002/pssa.200622132
19.
19. N. Kohara, T. Negami, M. Nishitani, and T. Wada, Jpn. J. Appl. Phys., Part 2 34, L1141 (1995).
http://dx.doi.org/10.1143/JJAP.34.L1141
20.
20. G. Kaune, S. Hartnauer, F. Syrowatka, and R. Scheer, Sol. Energy Mater. Sol. Cells 120, 596 (2014).
http://dx.doi.org/10.1016/j.solmat.2013.09.043
21.
21. R. B. V. Chalapathy, G. S. Jung, and B. T. Ahn, Sol. Energy Mater. Sol. Cells 95, 3216 (2011).
http://dx.doi.org/10.1016/j.solmat.2011.07.017
22.
22. I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W. C. Hsu, A. Goodrich, and R. Noufi, Sol. Energy Mater. Sol. Cells 101, 154 (2012).
http://dx.doi.org/10.1016/j.solmat.2012.01.008
23.
23. J. W. Li, D. B. Mitzi, and V. B. Shenoy, ACS Nano 5, 8613 (2011).
http://dx.doi.org/10.1021/nn203230g
24.
24. Z. Guan, W. Luo, and Z. Zou, CrystEngComm 16, 2929 (2014).
http://dx.doi.org/10.1039/c3ce42373e
25.
25. A. V. Moholkar, S. S. Shinde, G. L. Agawane, S. H. Jo, K. Y. Rajpure, P. S. Patil, C. H. Bhosale, and J. H. Kim, J. Alloys Compd. 544, 145 (2012).
http://dx.doi.org/10.1016/j.jallcom.2012.07.108
26.
26. B. Shin, N. A. Bojarczuk, and S. Guha, Appl. Phys. Lett 102, 091907 (2013).
http://dx.doi.org/10.1063/1.4794422
27.
27. X. Zhu, Z. Zhou, Y. Wang, L. Zhang, A. Li, and F. Huang, Sol. Energy Mater. Sol. Cells 101, 57 (2012).
http://dx.doi.org/10.1016/j.solmat.2012.02.015
28.
28. F. Y. Liu, K. W. Sun, W. Li, C. Yan, L. X. Jiang, X. J. Hao, and M. A. Green, Appl. Phys. Lett. 104, 051105 (2014).
http://dx.doi.org/10.1063/1.4863736
29.
29. F. Y. Liu, Y. Li, K. Zhang, B. Wang, C. Yan, Y. Q. Lai, Z. A. Zhang, J. Li, and Y. X. Liu, Sol. Energy Mater. Sol. Cells 94, 2431 (2010).
http://dx.doi.org/10.1016/j.solmat.2010.08.003
30.
30. H. Yoo, J. Kim, and L. Zhang, Curr. Appl. Phys. 12, 1052 (2012).
http://dx.doi.org/10.1016/j.cap.2012.01.006
31.
31. P. A. Fernandes, P. M. P. Salome, and A. F. Cunha, J. Alloys Compd. 509, 7600 (2011).
http://dx.doi.org/10.1016/j.jallcom.2011.04.097
32.
32. P. A. Fernandes, P. M. P. Salome, and A. F. Cunha, Thin Solid Films 517, 2519 (2009).
http://dx.doi.org/10.1016/j.tsf.2008.11.031
33.
33. Y. Sun, Y. Zhang, H. Wang, M. Xie, K. Zong, H. Zheng, Y. Shu, J. Liu, H. Yan, M. Zhu, and W. Lau, J. Mater. Chem. A 1, 6880 (2013).
http://dx.doi.org/10.1039/c3ta10566k
34.
34. S. Sohila, M. Rajalakshmi, C. Ghosh, A. K. Arora, and C. Muthamizhchelvan, J. Alloys Compd. 509, 5843 (2011).
http://dx.doi.org/10.1016/j.jallcom.2011.02.141
35.
35. B. G. Mendis, M. C. J. Goodman, J. D. Major, A. A. Taylor, K. Durose, and D. P. Halliday, J. Appl. Phys. 112, 124508 (2012).
http://dx.doi.org/10.1063/1.4769738
36.
36. Y. M. Yu, S. Nam, O. Byungsung, K. S. Lee, Y. D. Choi, M. Y. Yoon, and P. Y. Yu, Mater. Chem. Phys. 78, 149 (2003).
http://dx.doi.org/10.1016/S0254-0584(02)00296-1
37.
37. Q. Xiong, J. Wang, O. Reese, L. Y. Voon, and P. C. Eklund, Nano Lett. 4, 1991 (2004).
http://dx.doi.org/10.1021/nl048720h
38.
38. R. Caballero, V. Izquierdo-Roca, J. M. Merino, E. J. Friedrich, A. Climent-Font, E. Saucedo, A. Pérez-Rodríguez, and M. León, Thin Solid Films 535, 62 (2013).
http://dx.doi.org/10.1016/j.tsf.2012.10.028
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/14/10.1063/1.4870508
Loading
/content/aip/journal/apl/104/14/10.1063/1.4870508
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/104/14/10.1063/1.4870508
2014-04-07
2014-10-21

Abstract

Cu ZnSnS thin films have been prepared by the sol-gel sulfurization method on Mo-coated substrates, and the comparative studies between the atmospheric pressure sulfurization and low pressure sulfurization was carried out. The Cu ZnSnS film sulfurized at low pressure exhibits larger grain size, thinner MoS layer, and free of SnS secondary phase, but more ZnS on surface. The device efficiency of 4.1% using Cu ZnSnS absorber from atmospheric pressure sulfurization is improved to 5.7% using that from low pressure sulfurization via the boost of open-circuit and fill factor.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/104/14/1.4870508.html;jsessionid=hrle1da9330v.x-aip-live-03?itemId=/content/aip/journal/apl/104/14/10.1063/1.4870508&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Improving the conversion efficiency of Cu2ZnSnS4 solar cell by low pressure sulfurization
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/14/10.1063/1.4870508
10.1063/1.4870508
SEARCH_EXPAND_ITEM