1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
A broadband transformation-optics metasurface lens
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/104/15/10.1063/1.4870809
1.
1. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 47734776 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.4773
2.
2. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 20752084 (1999).
http://dx.doi.org/10.1109/22.798002
3.
3. J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 17801782 (2006).
http://dx.doi.org/10.1126/science.1125907
4.
4. U. Leonhardt, Science 312, 17771780 (2006).
http://dx.doi.org/10.1126/science.1126493
5.
5. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
http://dx.doi.org/10.1126/science.1133628
6.
6. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, Science 323, 366369 (2009).
http://dx.doi.org/10.1126/science.1166949
7.
7. W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, Appl. Phys. Lett. 92, 264101 (2008).
http://dx.doi.org/10.1063/1.2951485
8.
8. H. Y. Chen, B. Hou, S. Y. Chen, X. Y. Ao, W. J. Wen, and C. T. Chan, Phys. Rev. Lett. 102, 183903 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.183903
9.
9. W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. P. Liu, and D. R. Smith, Phys. Rev. E 78, 066607 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.066607
10.
10. P. H. Tichit, S. N. Burokur, and A. De Lustrac, J. Appl. Phys. 105, 104912 (2009).
http://dx.doi.org/10.1063/1.3131843
11.
11. W. X. Jiang, T. J. Cui, H. F. Ma, X. M. Yang, and Q. Cheng, Appl. Phys. Lett. 93, 221906 (2008).
http://dx.doi.org/10.1063/1.3040307
12.
12. Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, Nano Lett. 10, 1991 (2010).
http://dx.doi.org/10.1021/nl1008019
13.
13. M. Kadic, S. Guenneau, S. Enoch, P. A. Huidobro, L. Martin-Moreno, F. J. Garcia-Viadal, J. Renger, and R. Quidant, Nanophotonics 1, 5164 (2012).
http://dx.doi.org/10.1515/nanoph-2012-0011
14.
14. R. Yang and Y. Hao, Opt. Express 20, 9341 (2012).
http://dx.doi.org/10.1364/OE.20.009341
15.
15. Q. Wu, J. P. Turpin, and D. H. Werner, Light Sci. Appl. 1, e38 (2012).
http://dx.doi.org/10.1038/lsa.2012.38
16.
16. C. L. Holloway, D. C. Love, E. F. Kuester, J. A. Gordon, and D. A. Hill, IEEE Trans. Antennas Propag. 60, 51735186 (2012).
http://dx.doi.org/10.1109/TAP.2012.2207668
17.
17. X. B. Yin, Z. L. Ye, J. Rho, Y. Wang, and X. Zhang, Science 339, 14051407 (2013).
http://dx.doi.org/10.1126/science.1231758
18.
18. N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V. Kleiner, and E. Hasman, Science 340, 724726 (2013).
http://dx.doi.org/10.1126/science.1234892
19.
19. C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O'Hara, J. Booth, and D. R. Smith, IEEE Antennas Propag. Mag. 54, 1035 (2012).
http://dx.doi.org/10.1109/MAP.2012.6230714
20.
20. P. Y. Chen and A. Alu, Phys. Rev. B 84, 205110 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.205110
21.
21. Y. Zhao and A. Alu, Phys. Rev. B 84, 205428 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.205428
22.
22. B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and D. F. Sievenpiper, IEEE Trans. Antennas Propag. 58, 32123221 (2010).
http://dx.doi.org/10.1109/TAP.2010.2055812
23.
23. G. Minatti, S. Maci, P. De Vita, A. Freni, and M. A. Sabbadini, IEEE Trans. Antennas Propag. 60, 49985009 (2012).
http://dx.doi.org/10.1109/TAP.2012.2208614
24.
24. G. Minatti, F. Caminita, M. Casaletti, and S. Maci, IEEE Trans. Antennas Propag. 59, 44364444 (2011).
http://dx.doi.org/10.1109/TAP.2011.2165691
25.
25. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333337 (2011).
http://dx.doi.org/10.1126/science.1210713
26.
26. X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, Science 335, 427 (2012).
http://dx.doi.org/10.1126/science.1214686
27.
27. N. Engheta, Science 334, 317318 (2011).
http://dx.doi.org/10.1126/science.1213278
28.
28. N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. Tetienne, Z. Gaburro, and F. Capasso, IEEE J. Quantum Electron. 19, 4700423 (2013).
http://dx.doi.org/10.1109/JSTQE.2013.2241399
29.
29. X. Chen, L. Huang, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgraf, Nat. Commun. 3, 1198 (2012).
http://dx.doi.org/10.1038/ncomms2207
30.
30. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, Nature Mater. 11, 426431 (2012).
http://dx.doi.org/10.1038/nmat3292
31.
31. G. Gok and A. Grbic, IEEE Trans. Antennas Propag. 58, 15591566 (2010).
http://dx.doi.org/10.1109/TAP.2010.2044351
32.
32. C. Pfeiffer and A. Grbic, IEEE Trans. Antennas Propag. 58, 30553059 (2010).
http://dx.doi.org/10.1109/TAP.2010.2052582
33.
33. F. Yang, Z. Mei, T. Jin, and T. Cui, Phys. Rev. Lett. 109, 053902 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.053902
34.
34. E. Martini and S. Maci, Transformation optics applied to metasurface, 7th European Conference on Antennas and Propagation (EUCAP 2013).
35.
35. Y. Xu, K. Yao, and H. Chen, Europhys. Lett. 99, 44002 (2012).
http://dx.doi.org/10.1209/0295-5075/99/44002
36.
36. J. Li and J. B. Pendry, Phys. Rev. Lett. 101, 203901 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.203901
37.
37. R. K. Luneburg, Mathematical Theory of Optics (Brown University, 1944).
38.
38. N. Kundtz and D. R. Smith, Nature Mater. 9, 129 (2010).
http://dx.doi.org/10.1038/nmat2610
39.
39. H. F. Ma and T. J. Cui, Nat. Commun. 1, 124 (2010).
http://dx.doi.org/10.1038/ncomms1126
40.
40. J. A. Dockrey, M. J. Lockyear, S. J. Berry, S. A. R. Horsley, J. R. Sambles, and A. P. Hibbins, Phys. Rev. B 87, 125137 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.125137
41.
41. X. P. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, Proc. Natl. Acad. Sci. U. S. A. 110, 4045 (2013).
http://dx.doi.org/10.1073/pnas.1210417110
42.
42. D. Dominic and K. Wu, IEEE Trans. Microwave Theory Tech. 54, 2516 (2006).
http://dx.doi.org/10.1109/TMTT.2006.875807
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/15/10.1063/1.4870809
Loading
/content/aip/journal/apl/104/15/10.1063/1.4870809
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/104/15/10.1063/1.4870809
2014-04-14
2014-07-30

Abstract

We present a transformational metasurface Luneburg lens based on the quasi-conformal mapping method, which has weakly anisotropic constitutive parameters. We design the metasurface lens using inhomogeneous artificial structures to realize the required surface refractive indexes. The transformational metasurface Luneburg lens is fabricated and the measurement results demonstrate very good performance in controlling the radiated surface waves.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/104/15/1.4870809.html;jsessionid=30mgfvuf5ximp.x-aip-live-03?itemId=/content/aip/journal/apl/104/15/10.1063/1.4870809&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A broadband transformation-optics metasurface lens
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/15/10.1063/1.4870809
10.1063/1.4870809
SEARCH_EXPAND_ITEM