Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/104/15/10.1063/1.4871868
1.
1. M. D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000).
http://dx.doi.org/10.1146/annurev.physchem.51.1.99
2.
2. T. Kawasaki and H. Tanaka, Phys. Rev. Lett. 102, 185701 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.185701
3.
3. A. Zubelewicz, Sci. Rep. 3, 1323 (2013).
http://dx.doi.org/10.1038/srep01323
4.
4. E. V. Russell and N. E. Israeloff, Nature 408, 695 (2000).
http://dx.doi.org/10.1038/35047037
5.
5. H.-W. Hu, G. A. Carson, and S. Granick, Phys. Rev. Lett. 66, 2758 (1991).
http://dx.doi.org/10.1103/PhysRevLett.66.2758
6.
6. E. A. Uebler, Ind. Eng. Chem. Fundam. 10, 250 (1971).
http://dx.doi.org/10.1021/i160038a010
7.
7. T. Y. Tsong and M. I. Kanehisa, Biochemistry 16, 2674 (1977).
http://dx.doi.org/10.1021/bi00631a014
8.
8. C. Drummond and J. Israelachvili, Phys. Rev. E. 63, 041506 (2001).
http://dx.doi.org/10.1103/PhysRevE.63.041506
9.
9. S. A. Kivelson and G. Tarjus, Nature 7, 831 (2008).
http://dx.doi.org/10.1038/nmat2304
10.
10. W. Kob, S. Roldan-Vargas, and L. Berthier, Nat. Phys. 8, 164 (2012).
http://dx.doi.org/10.1038/nphys2133
11.
11. K. Murata and H. Tanaka, Nat. Mater. 11, 436 (2012).
http://dx.doi.org/10.1038/nmat3271
12.
12. R. Kurita and H. Tanaka, Science 306, 845 (2004).
http://dx.doi.org/10.1126/science.1103073
13.
13. D. Lootens, H. Van Damme, and P. Hebraud, Phys. Rev. Lett. 90, 178301 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.178301
14.
14. P. Ballesta, A. Duri, and L. Cipelletti, Nat. Phys. 4, 550 (2008).
http://dx.doi.org/10.1038/nphys1000
15.
15. G. Castillo, N. Mujica, and R. Soto, Phys. Rev. Lett. 109, 095701 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.095701
16.
16. A. Parsaeian and H. E. Castillo, Phys. Rev. Lett. 102, 055704 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.055704
17.
17. M. D. Ediger, C. A. Angell, and S. R. Nagel, J. Phys. Chem. 100, 13200 (1996).
http://dx.doi.org/10.1021/jp953538d
18.
18. K. Nishikawa and I. Tanaka, Chem. Phys. Lett. 244, 149 (1995).
http://dx.doi.org/10.1016/0009-2614(95)00818-O
19.
19. D. J. Myers, S. Chen, M. Shigeiwa, B. J. Cherayil, and M. D. Fayer, J. Chem. Phys. 109, 5971 (1998).
http://dx.doi.org/10.1063/1.477222
20.
20. G. M. Wang, E. M. Sevick, E. Mittag, D. J. Searles, and D. J. Evans, Phys. Rev. Lett. 89, 050601 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.050601
21.
21. G. M. Whitesides and B. Grzybowski, Science 295, 2418 (2002).
http://dx.doi.org/10.1126/science.1070821
22.
22. A. Sokolov, M. M. Apodaca, B. A. Grzybowski, and I. S. Aranson, Proc. Natl. Acad. Sci. U. S. A. 107, 969 (2010).
http://dx.doi.org/10.1073/pnas.0913015107
23.
23. T. M. Smith, R. W. Reynolds, T. C. Peterson, and J. Lawrimore, J. Climate 21, 2283 (2008).
http://dx.doi.org/10.1175/2007JCLI2100.1
24.
24. R. S. Vose, D. Arndt, V. F. Banzon, D. R. Easterling, B. Gleason, B. Huang, E. Kearns, J. H. Lawrimore, M. J. Menne, T. C. Peterson, R. W. Reynolds, T. M. Smith, C. N. Williams, Jr., and D. B. Wuertz, Bull. Am. Meteorol. Soc. 93, 1677 (2012).
http://dx.doi.org/10.1175/BAMS-D-11-00241.1
25.
25. J. Hansen, M. Sato, and P. Ruedy, Proc. Natl. Acad. Sci. U. S. A. 109, E2415 (2012).
http://dx.doi.org/10.1073/pnas.1205276109
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/15/10.1063/1.4871868
Loading
/content/aip/journal/apl/104/15/10.1063/1.4871868
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/104/15/10.1063/1.4871868
2014-04-17
2016-12-11

Abstract

Viscoelastic liquids at small scales and in the presence of strong gradients are known to exhibit anomalous behaviors. Despite recent advances, our understanding of the phenomena is far from complete. For example, it is not clear what causes the molecules in molecular liquids to act in a collective manner and why similar dynamic heterogeneity takes place in gels and polymers? Furthermore, we would like to know why particles in suspensions experience clustering? The “ordered” liquid is a liquid, and yet it exhibits some properties of a viscoelastic solid-like material. We conjecture that the liquid-like and solid-like behaviors can coexist but only in the presence of the dynamics heterogeneity. In liquids, the heterogeneity is an internal constraint. In amorphous viscoelastic solids, it destroys the solid-like microstructural organization. Thus, the two behaviors may converge and become indistinguishable. The transitional behavior occurs in the absence of an abrupt configurational change. For this reason, these transitions cannot be viewed as the first order phase transformations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/104/15/1.4871868.html;jsessionid=6js40D70YSl_V90_RcnRfTbj.x-aip-live-02?itemId=/content/aip/journal/apl/104/15/10.1063/1.4871868&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/104/15/10.1063/1.4871868&pageURL=http://scitation.aip.org/content/aip/journal/apl/104/15/10.1063/1.4871868'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,