Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/104/16/10.1063/1.4872462
1.
1. A. Kundt, Philos. Mag. J. Sci. 35, 41 (1868).
2.
2. D. Foresti, M. Nabavi, M. Klingauf, A. Ferrari, and D. Poulikakos, Proc. Natl. Acad. Sci. U. S. A. 110, 12549 (2013).
http://dx.doi.org/10.1073/pnas.1301860110
3.
3. W. J. Xie, C. D. Cao, Y. J. Lu, Z. Y. Hong, and B. Wei, Appl. Phys. Lett. 89, 214102 (2006).
http://dx.doi.org/10.1063/1.2396893
4.
4. M. Evander and J. Nilsson, Lab Chip 12, 4667 (2012).
http://dx.doi.org/10.1039/c2lc40999b
5.
5. G. Thalhammer, R. Steiger, M. Meinschad, M. Hill, and S. Bernet, Biomed. Opt. Express 2, 2859 (2011).
http://dx.doi.org/10.1364/BOE.2.002859
6.
6. F. Petersson, A. Nilsson, C. Holm, H. Jonsson, and T. Laurell, Analyst 129, 938 (2004).
http://dx.doi.org/10.1039/b409139f
7.
7. L. King, Proc. R. Soc. A 147, 212 (1934).
http://dx.doi.org/10.1098/rspa.1934.0215
8.
8. L. P. Gor'kov, Sov. Phys. 6, 773 (1962).
9.
9. X. Ding, S.-C. S. Lin, B. Kiraly, H. Yue, S. Li, I.-K. Chiang, J. Shi, S. J. Benkovic, and T. J. Huang, Proc. Natl. Acad. Sci. U. S. A. 109, 11105 (2012).
http://dx.doi.org/10.1073/pnas.1209288109
10.
10. C. D. Wood, J. E. Cunningham, R. ORorke, C. Walti, E. H. Linfield, A. G. Davies, and S. D. Evans, Appl. Phys. Lett. 94, 054101 (2009).
http://dx.doi.org/10.1063/1.3076127
11.
11. M. Gedge and M. Hill, Lab Chip 12, 2998 (2012).
http://dx.doi.org/10.1039/c2lc40565b
12.
12. P. Glynne-Jones, C. Démoré, C. Ye, Y. Qiu, S. Cochran, and M. Hill, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 1258 (2012).
http://dx.doi.org/10.1109/TUFFC.2012.2316
13.
13. J. Greenhall, F. Guevara Vasquez, and B. Raeymaekers, Appl. Phys. Lett. 103, 074103 (2013).
http://dx.doi.org/10.1063/1.4819031
14.
14. A. L. Bernassau, P. Glynne-Jones, F. Gesellchen, M. Riehle, M. Hill, and D. R. S. Cumming, Ultrasonics 54, 268 (2014).
http://dx.doi.org/10.1016/j.ultras.2013.04.019
15.
15. M. Pitzek, R. Steiger, G. Thalhammer, S. Bernet, and M. Ritsch-Marte, Opt. Express 17, 19414 (2009).
http://dx.doi.org/10.1364/OE.17.019414
16.
16. P. Glynne-Jones and M. Hill, Lab Chip 13, 1003 (2013).
http://dx.doi.org/10.1039/c3lc41369a
17.
17. J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. Cooper, and M. Padgett, Phys. Rev. E 79, 026301 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.026301
18.
18. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).
http://dx.doi.org/10.1364/OL.11.000288
19.
19. R. M. Simmons, J. T. Finer, S. Chu, J. A. Spudich, and T. Jeffrey, Biophys. J. 70, 1813 (1996).
http://dx.doi.org/10.1016/S0006-3495(96)79746-1
20.
20. K. Berg-Sørensen and H. Flyvbjerg, Rev. Sci. Instrum. 75, 594 (2004).
http://dx.doi.org/10.1063/1.1645654
21.
21. J. Molloy and M. Padgett, Contemp. Phys. 43, 241 (2002).
http://dx.doi.org/10.1080/00107510110116051
22.
22. R. Barnkob, P. Augustsson, T. Laurell, and H. Bruus, Phys. Rev. E 86, 056307 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.056307
23.
23. R. Lindken, M. Rossi, S. Grosse, and J. Westerweel, Lab Chip 9, 2551 (2009).
http://dx.doi.org/10.1039/b906558j
24.
24. A. Grinenko, C. K. Ong, C. R. P. Courtney, P. D. Wilcox, and B. W. Drinkwater, Appl. Phys. Lett. 101, 233501 (2012).
http://dx.doi.org/10.1063/1.4769092
25.
25. C. R. P. Courtney, C. Ong, B. W. Drinkwater, A. Bernassau, P. D. Wilcox, and D. R. S. Cumming, Proc. R. Soc. A 468, 337 (2012).
http://dx.doi.org/10.1098/rspa.2011.0269
26.
26. G. Gibson, D. M. Carberry, G. Whyte, J. Leach, J. Courtial, J. C. Jackson, D. Robert, M. Miles, and M. Padgett, J. Opt. A: Pure Appl. Opt. 10, 044009 (2008).
http://dx.doi.org/10.1088/1464-4258/10/4/044009
27.
27. D. B. Phillips, S. H. Simpson, J. A. Grieve, G. M. Gibson, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, Opt. Express 19, 20622 (2011).
http://dx.doi.org/10.1364/OE.19.020622
28.
28. R. W. Bowman, M. Gibson, A. Linnenberger, D. B. Phillips, J. A. Grieve, D. M. Carberry, S. Serati, M. J. Miles, and M. J. Padgett, Comput. Phys. Commun. 185, 268 (2014).
http://dx.doi.org/10.1016/j.cpc.2013.08.008
29.
29. S. Simpson and S. Hanna, Opt. Express 19, 16526 (2011).
http://dx.doi.org/10.1364/OE.19.016526
30.
30. J. L. Ubbers and R. G. Raaff, Ultrasound Med. Biol. 24, 1065 (1998).
http://dx.doi.org/10.1016/S0301-5629(98)00091-X
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/16/10.1063/1.4872462
Loading
/content/aip/journal/apl/104/16/10.1063/1.4872462
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/104/16/10.1063/1.4872462
2014-04-24
2016-09-25

Abstract

Direct measurement of the forces experienced by micro-spheres in an acoustic standing wave device have been obtained using calibrated optical traps generated with holographic optical tweezers. A micro-sphere, which is optically trapped in three dimensions, can be moved through the acoustic device to measure forces acting upon it. When the micro-sphere is subjected to acoustic forces, it's equilibrium position is displaced to a position where the acoustic forces and optical forces are balanced. Once the optical trapping stiffness has been calibrated, observation of this displacement enables a direct measurement of the forces acting upon the micro-sphere. The measured forces are separated into a spatially oscillating component, attributed to the acoustic radiation force, and a constant force, attributed to fluid streaming. As the drive conditions of the acoustic device were varied, oscillating forces (>2.5 pN) and streaming forces (<0.2 pN) were measured. A 5 m silica micro-sphere was used to characterise a 6.8 MHz standing wave, λ = 220 m, to a spatial resolution limited by the uncertainty in the positioning of the micro-sphere (here to within 2 nm) and with a force resolution on the order of 10 fN. The results have application in the design and testing of acoustic manipulation devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/104/16/1.4872462.html;jsessionid=S0aLXQSVR3tv4FoPPfBHeRTC.x-aip-live-02?itemId=/content/aip/journal/apl/104/16/10.1063/1.4872462&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/104/16/10.1063/1.4872462&pageURL=http://scitation.aip.org/content/aip/journal/apl/104/16/10.1063/1.4872462'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,