Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/104/16/10.1063/1.4873520
1.
1. F. Cao, I. J. Beyerlein, F. L. Addessio, B. H. Sencer, C. P. Trujillo, E. K. Cerreta, and G. T. Gray III, Acta Mater. 58, 549 (2010).
http://dx.doi.org/10.1016/j.actamat.2009.09.033
2.
2. N. K. Bourne, J. C. F. Millett, and G. T. Gray III, J. Mater. Sci. 44, 3319 (2009).
http://dx.doi.org/10.1007/s10853-009-3394-y
3.
3. J. Yang, J. I. Goldstein, E. R. D. Scott, J. R. Michael, P. G. Kotula, T. Pham, and T. J. Mccoy, Meteorit. Planet. Sci. 46, 1227 (2011).
http://dx.doi.org/10.1111/j.1945-5100.2011.01210.x
4.
4. A. E. Rubin, Meteorit. Planet. Sci. 32, 231 (1997).
http://dx.doi.org/10.1111/j.1945-5100.1997.tb01262.x
5.
5. O. Grässel and G. Frommeyer, Mater. Sci. Technol. 14, 1213 (1998).
http://dx.doi.org/10.1179/mst.1998.14.12.1213
6.
6. E. K. H. Salje, Annu. Rev. Mater. Res. 42, 265 (2012).
http://dx.doi.org/10.1146/annurev-matsci-070511-155022
7.
7. E. K. H. Salje, X. Ding, Z. Zhao, T. Lookman, and A. Saxena, Phys. Rev. B 83, 104109 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.104109
8.
8. X. Ding, Z. Zhao, T. Lookman, A. Saxena, and E. K. H. Salje, Adv. Mater. 24, 5385 (2012).
http://dx.doi.org/10.1002/adma.201200986
9.
9. X. Ding, T. Lookman, Z. Zhao, A. Saxena, J. Sun, and E. K. H. Salje, Phys. Rev. B 87, 094109 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.094109
10.
10. Z. Zhao, X. Ding, J. Sun, and E. K. H. Salje, Adv. Mater. 25, 3244 (2013).
http://dx.doi.org/10.1002/adma.201300655
11.
11. R. Niemann, J. Baró, O. Heczko, L. Schultz, S. Fähler, E. Vives, L. Mañosa, and A. Planes, Phys. Rev. B 86, 214101 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.214101
12.
12. E. K. H. Salje, J. Koppensteiner, M. Reinecker, W. Schranz, and A. Planes, Appl. Phys. Lett. 95, 231908 (2009).
http://dx.doi.org/10.1063/1.3269578
13.
13. E. Bonnot, E. Vives, L. Mañosa, A. Planes, and R. Romero, Phys. Rev. B 78, 094104 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.094104
14.
14. E. K. H. Salje and K. A. Dahmen, Annu. Rev. Condens. Matter Phys. 5, 233 (2014).
http://dx.doi.org/10.1146/annurev-conmatphys-031113-133838
15.
15. F.-J. Pérez-Reche, B. Tadić, L. Mañosa, A. Planes, and E. Vives, Phys. Rev. Lett. 93, 195701 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.195701
16.
16. E. K. H. Salje and W. Schranz, Z. Kristallogr. 226, 1 (2011).
http://dx.doi.org/10.1524/zkri.2011.1253
17.
17. S. Plimpton, J. Comput. Phys. 117, 1 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
18.
18. S. Nosé, J. Chem. Phys. 81, 511 (1984).
http://dx.doi.org/10.1063/1.447334
19.
19. W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1695
20.
20. J. Baró, Á. Corral, X. Illa, A. Planes, E. K. H. Salje, W. Schranz, D. E. Soto-Parra, and E. Vives, Phys. Rev. Lett. 110, 088702 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.088702
21.
21. R. J. Harrison and E. K. H. Salje, Appl. Phys. Lett. 97, 021907 (2010).
http://dx.doi.org/10.1063/1.3460170
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/16/10.1063/1.4873520
Loading
/content/aip/journal/apl/104/16/10.1063/1.4873520
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/104/16/10.1063/1.4873520
2014-04-24
2016-12-10

Abstract

The molecular dynamics simulation of the yield collapse in ferroelastic and martensitic materials under high strain rates shows power law decays of the yield energy. The energy exponent of the “jerk” distribution during yield does not depend on the strain rate and was found to be close to the mean field value of ε = 1.35. The total yield energy changes dramatically during the crossover between the isothermal regime at low strain rates and the adiabatic regime at high strain rates. The crossover point is found in our simulations at 10−5/phonon time which corresponds to strain rates of approximately 108 1/s. Faster strain rates occur for high speed impact (shock deformation) with no strain absorption by twinning and no thermal equilibration while slightly slower strain rates lead to rate independent yield energies.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/104/16/1.4873520.html;jsessionid=2yDEvNHyOG0C4yOpFSEeMbdf.x-aip-live-06?itemId=/content/aip/journal/apl/104/16/10.1063/1.4873520&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/104/16/10.1063/1.4873520&pageURL=http://scitation.aip.org/content/aip/journal/apl/104/16/10.1063/1.4873520'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,