Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/104/17/10.1063/1.4874846
1.
1. H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel, and N. G. Park, Sci. Rep. 2, 591 (2012).
http://dx.doi.org/10.1038/srep00591
2.
2. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Science 338, 643 (2012).
http://dx.doi.org/10.1126/science.1228604
3.
3. J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. S. Lim, J. A. Chang, Y. H. Lee, H. jung Kim, A. Sarkar, M. K. Nazeeruddin, M. Grätzel, and S. I. Seok, Nat. Photonics 7, 486 (2013).
http://dx.doi.org/10.1038/nphoton.2013.80
4.
4. M. Liu, M. B. Johnston, and H. J. Snaith, Nature 501, 395 (2013).
http://dx.doi.org/10.1038/nature12509
5.
5. T. Ishihara, J. Takahashi, and T. Goto, Phys. Rev. B 42, 11099 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.11099
6.
6. K. Tanaka, F. Sano, T. Takahashi, T. Kondo, R. Ito, and K. Ema, Solid State Commun. 122, 249 (2002).
http://dx.doi.org/10.1016/S0038-1098(02)00126-6
7.
7. K. Tanaka, T. Takahashi, T. Kondo, and K. Ema, Phys. Rev. B 71, 045312 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.045312
8.
8. K. Pradeesh, J. J. Baumberg, and G. Vijaya Prakash, Appl. Phys. Lett. 95, 173305 (2009).
http://dx.doi.org/10.1063/1.3257725
9.
9. G. Vijaya Prakash, K. Pradeesh, R. Ratnani, K. Saraswat, M. E. Light, and J. J. Baumberg, J. Phys. D: Appl. Phys. 42, 185405 (2009).
http://dx.doi.org/10.1088/0022-3727/42/18/185405
10.
10. S. Zhang, P. Audebert, Y. Wei, A. Al Choueiry, G. Lanty, A. Bréhier, L. Galmiche, G. Clavier, C. Boissière, J. S. Lauret, and E. Deleporte, Materials 3, 3385 (2010).
http://dx.doi.org/10.3390/ma3053385
11.
11. M. Era and S. Oka, Thin Solid Films 376, 232 (2000).
http://dx.doi.org/10.1016/S0040-6090(00)01407-3
12.
12. T. Matsui, A. Yamaguchi, Y. Takeoka, M. Rikukawa, and K. Sanui, Chem. Commun. 3, 1094 (2002).
http://dx.doi.org/10.1039/b200965j
13.
13. K. Pradeesh, J. J. Baumberg, and G. Vijaya Prakash, Appl. Phys. Lett. 95, 033309 (2009).
http://dx.doi.org/10.1063/1.3186639
14.
14. M. Era and K. Maeda, Thin Solid Films 331, 285 (1998).
http://dx.doi.org/10.1016/S0040-6090(98)00932-8
15.
15. I. Saikumar, S. Ahmad, J. J. Baumberg, and G. Vijaya Prakash, Scr. Mater. 67, 834 (2012).
http://dx.doi.org/10.1016/j.scriptamat.2012.07.048
16.
16. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
17.
17. P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, Appl. Phys. Lett. 91, 063124 (2007).
http://dx.doi.org/10.1063/1.2768624
18.
18. Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, Nano Lett. 7, 2758 (2007).
http://dx.doi.org/10.1021/nl071254m
19.
19. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, Nano Lett. 10, 1271 (2010).
http://dx.doi.org/10.1021/nl903868w
20.
20. A. Castellanos-Gomez, N. Agrait, and G. Rubio-Bollinger, Appl. Phys. Lett. 96, 213116 (2010).
http://dx.doi.org/10.1063/1.3442495
21.
21. P. Tonndorf, R. Schmidt, P. Bottger, X. Zhang, J. Borner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D. Zahn, S. de Vasconcellos, and R. Bratschitsch, Opt. Express 21, 4908 (2013).
http://dx.doi.org/10.1364/OE.21.004908
22.
22. D. G. Billing and A. Lemmerer, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 62, 269 (2006).
http://dx.doi.org/10.1107/S0108270106013953
23.
23. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University Press, 1999).
24.
24. J. Fujisawa and T. Ishihara, Phys. Rev. B 70, 113203 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.113203
25.
25. J. Fujisawa and N. Tajima, Phys. Rev. B 72, 125201 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.125201
26.
26. J. Fujisawa, N. Tajima, K. Tamaki, M. Shimomura, and T. Ishihara, J. Phys. Chem. C 111, 1146 (2007).
http://dx.doi.org/10.1021/jp063171k
27.
27. D. B. Mitzi, K. Chondroudis, and C. R. Kagan, Inorg. Chem. 38, 6246 (1999).
http://dx.doi.org/10.1021/ic991048k
28.
28. S. Baranovskii, U. Doerr, and P. Thomas, Phys. Rev. B 48, 17149 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.17149
29.
29. L. Andreani and G. Panzarini, Phys. Rev. B 57, 4670 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.4670
30.
30. I. Kuznetsova, N. Gogh, J. Förstner, T. Meier, S. T. Cundiff, I. Varga, and P. Thomas, Phys. Rev. B 81, 075307 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.075307
31.
31. T. Iwasaki, T. Goto, and Y. Nishina, Phys. Status Solidi B 88, 289 (1978).
http://dx.doi.org/10.1002/pssb.2220880133
32.
32. T. Goto and J. Maeda, J. Phys. Soc. Jpn. 56, 3710 (1987).
http://dx.doi.org/10.1143/JPSJ.56.3710
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/17/10.1063/1.4874846
Loading
/content/aip/journal/apl/104/17/10.1063/1.4874846
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/104/17/10.1063/1.4874846
2014-05-01
2016-12-06

Abstract

Ultra-thin flakes of 2D organic-inorganic perovskite (CHCHNH)PbI are produced using micromechanical exfoliation. Mono- and few-layer areas are identified using optical and atomic force microscopy, with an interlayer spacing of 1.6 nm. Refractive indices extracted from the optical spectra reveal a sample thickness dependence due to the charge transfer between organic and inorganic layers. These measurements demonstrate a clear difference in the exciton properties between “bulk” (>15 layers) and very thin (<8 layer) regions as a result of the structural rearrangement of organic molecules around the inorganic sheets.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/104/17/1.4874846.html;jsessionid=3cJDg7_sctK1ssxbNFdUNVNM.x-aip-live-02?itemId=/content/aip/journal/apl/104/17/10.1063/1.4874846&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/104/17/10.1063/1.4874846&pageURL=http://scitation.aip.org/content/aip/journal/apl/104/17/10.1063/1.4874846'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,