Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/104/19/10.1063/1.4876475
1.
1. J. A. Wilson and A. D. Yoffe, Adv. Phys. 18, 193 (1969).
http://dx.doi.org/10.1080/00018736900101307
2.
2. S. Helveg, J. Lauritsen, E. Laegsgaard, I. Stensgaard, J. Norskov, B. Clausen, H. Topsoe, and F. Besenbacher, Phys. Rev. Lett. 84, 951 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.951
3.
3. X. Huang, Z. Zeng, and H. Zhang, Chem. Soc. Rev. 42, 1934 (2013).
http://dx.doi.org/10.1039/c2cs35387c
4.
4. T. Li and G. Galli, J. Phys. Chem. C 111, 16192 (2007).
http://dx.doi.org/10.1021/jp075424v
5.
5. J. K. Ellis, M. J. Lucero, and G. E. Scuseria, Appl. Phys. Lett. 99, 261908 (2011).
http://dx.doi.org/10.1063/1.3672219
6.
6. A. Ramasubramaniam, Phys. Rev. B 86, 115409 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.115409
7.
7. T. Cheiwchanchamnangij and W. R. L. Lambrecht, Phys. Rev. B 85, 205302 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.205302
8.
8. A. Molina-Sánchez, D. Sangalli, K. Hummer, A. Marini, and L. Wirtz, Phys. Rev. B 88, 045412 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.045412
9.
9. A. Dashora, U. Ahuja, and K. Venugopalan, Comput. Mater. Sci. 69, 216 (2013).
http://dx.doi.org/10.1016/j.commatsci.2012.11.062
10.
10. D. Y. Qiu, F. H. da Jornada, and S. G. Louie, Phys. Rev. Lett. 111, 216805 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.216805
11.
11. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.136805
12.
12. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, Nano Lett. 10, 1271 (2010).
http://dx.doi.org/10.1021/nl903868w
13.
13. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, Nano Lett. 11, 5111 (2011).
http://dx.doi.org/10.1021/nl201874w
14.
14. P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D. R. T. Zahn, S. Michaelis de Vasconcellos, and R. Bratschitsch, Opt. Express 21, 4908 (2013).
http://dx.doi.org/10.1364/OE.21.004908
15.
15. C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and R. Sunmin, ACS Nano 4, 2695 (2010).
http://dx.doi.org/10.1021/nn1003937
16.
16. Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J. T.-W. Wang, C.-S. Chang, L.-J. Li, and T.-W. Lin, Adv. Mater. 24, 2320 (2012).
http://dx.doi.org/10.1002/adma.201104798
17.
17. H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, Adv. Funct. Mater. 22, 1385 (2012).
http://dx.doi.org/10.1002/adfm.201102111
18.
18. G. Sallen, L. Bouet, X. Marie, G. Wang, C. R. Zhu, W. P. Han, Y. Lu, P. H. Tan, T. Amand, B. L. Liu, and B. Urbaszek, Phys. Rev. B 86, 081301 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.081301
19.
19. T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, Nat. Commun. 3, 887 (2012).
http://dx.doi.org/10.1038/ncomms1882
20.
20. D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev. Lett. 108, 196802 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.196802
21.
21. K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, Nat. Mater. 12, 207 (2013).
http://dx.doi.org/10.1038/nmat3505
22.
22. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).
http://dx.doi.org/10.1038/nnano.2010.279
23.
23. B. Radisavljevic, M. B. Whitwick, and A. Kis, ACS Nano 5, 9934 (2011).
http://dx.doi.org/10.1021/nn203715c
24.
24. S. Ghatak, A. N. Pal, and A. Ghosh, ACS Nano 5, 7707 (2011).
http://dx.doi.org/10.1021/nn202852j
25.
25. Y. Zhang, J. Ye, Y. Matsuhashi, and Y. Iwasa, Nano Lett. 12, 1136 (2012).
http://dx.doi.org/10.1021/nl2021575
26.
26. Z. Yin, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, ACS Nano 6, 74 (2012).
http://dx.doi.org/10.1021/nn2024557
27.
27. W. Zhang, C.-P. Chuu, J.-K. Huang, C.-H. Chen, M.-L. Tsai, Y.-H. Chang, C.-T. Liang, Y.-Z. Chen, Y.-L. Chueh, J.-H. He, M.-Y. Chou, and L.-J. Li, Sci. Rep. 4, 3826 (2014).
http://dx.doi.org/10.1038/srep03826
28.
28. J. Xiao, D. Choi, L. Cosimbescu, P. Koech, J. Liu, and J. P. Lemmon, Chem. Mater. 22, 4522 (2010).
http://dx.doi.org/10.1021/cm101254j
29.
29. K. Chang and W. Chen, ACS Nano 5, 4720 (2011).
http://dx.doi.org/10.1021/nn200659w
30.
30. Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, and H. Dai, J. Am. Chem. Soc. 133, 7296 (2011).
http://dx.doi.org/10.1021/ja201269b
31.
31. H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D. W. H. Fam, A. I. Y. Tok, Q. Zhang, and H. Zhang, Small 8, 63 (2012).
http://dx.doi.org/10.1002/smll.201101016
32.
32. J. Feng, X. Qian, C. Huang, and J. Li, Nat. Photonics 6, 866 (2012).
http://dx.doi.org/10.1038/nphoton.2012.285
33.
33. G. Eda and S. A. Maier, ACS Nano 7, 5660 (2013).
http://dx.doi.org/10.1021/nn403159y
34.
34. A. K. M. Newaz, D. Prasai, J. I. Ziegler, D. Caudel, S. Robinson, R. F. Haglund, Jr., and K. I. Bolotin, Solid State Commun. 155, 49 (2013).
http://dx.doi.org/10.1016/j.ssc.2012.11.010
35.
35. W. S. Yun, S. W. Han, S. C. Hong, I. G. Kim, and J. D. Lee, Phys. Rev. B 85, 033305 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.033305
36.
36. H. Shi, H. Pan, Y.-W. Zhang, and B. I. Yakobson, Phys. Rev. B 87, 155304 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.155304
37.
37. K. He, C. Poole, K. F. Mak, and J. Shan, Nano Lett. 13, 2931 (2013).
http://dx.doi.org/10.1021/nl4013166
38.
38.See supplementary material at http://dx.doi.org/10.1063/1.4876475 for Raman spectra and optical spectra of the Au sandwiched MoS2. [Supplementary Material]
39.
39. Y. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan, and J. Lou, Small 8, 966 (2012).
http://dx.doi.org/10.1002/smll.201102654
40.
40. Y.-C. Lin, W. Zhang, J.-K. Huang, K.-K. Liu, Y.-H. Lee, C.-T. Liang, C.-W. Chu, and L.-J. Li, Nanoscale 4, 6637 (2012).
http://dx.doi.org/10.1039/c2nr31833d
41.
41. Y. Shi, J.-K. Huang, L. Jin, Y.-T. Hsu, S. F. Yu, L.-J. Li, and H. Y. Yang, Sci. Rep. 3, 1839 (2013).
http://dx.doi.org/10.1038/srep01839
42.
42. S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B. I. Yakobson, J.-C. Idrobo, P. M. Ajayan, and J. Lou, Nat. Mater. 12, 754 (2013).
http://dx.doi.org/10.1038/nmat3673
43.
43. R. R. Chance, A. Prock, and R. Silbey, Phys. Rev. A 12, 1448 (1975).
http://dx.doi.org/10.1103/PhysRevA.12.1448
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/19/10.1063/1.4876475
Loading
/content/aip/journal/apl/104/19/10.1063/1.4876475
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/104/19/10.1063/1.4876475
2014-05-13
2016-09-29

Abstract

We report coupling of excitons in monolayers of molybdenum disulphide to their mirror image in an underlying gold substrate. Excitons at the direct band gap are little affected by the substrate whereas strongly bound C-excitons associated with a van-Hove singularity change drastically. On quartz substrates only one C-exciton is visible (in the blue) but on gold substrates a strong red-shifted extra resonance in the green is seen. Exciton coupling to its image leads to formation of a “mirror biexciton” with enhanced binding energy. Estimates of this energy shift in an emitter-gold system match experiments well. The absorption spectrum of MoS on gold thus resembles a bilayer of MoS which has been created by optical coupling. Additional top-mirrors produce an “optical bulk.”

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/104/19/1.4876475.html;jsessionid=tqB2kowACLmDy5GCPtHnHfrc.x-aip-live-02?itemId=/content/aip/journal/apl/104/19/10.1063/1.4876475&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/104/19/10.1063/1.4876475&pageURL=http://scitation.aip.org/content/aip/journal/apl/104/19/10.1063/1.4876475'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,