Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. L. Hobbs and M. J. Kaneshige, in Proceedings of the Society for Experimental Mechanics Annual Conference, Albuquerque, NM, 2009;
1. M. L. Hobbs, M. J. Kaneshige, D. W. Gilbert, S. K. Marley, and S. N. Todd, J. Phys. Chem. A 113, 1047410487 (2009).
2. J. Wilbrand, Justus Liebigs, Ann. Chem. 128, 178 (1863).
3. B. M. Dobratz and P. C. Crawford, Report No. UCRL-5997 Change 2, 1985.
4. L. A. Burkhardt and J. H. Bryden, Acta Cryst. 7, 135 (1954).
5. R. M. Vrcelj, J. N. Sherwood, A. R. Kennedy, H. G. Gallagher, and T. Gelbrich, Cryst. Growth Des. 3(6), 1027 (2003).
6. R. M. Vrcelj, H. G. Gallagher, and J. N. Sherwood, J. Am. Chem. Soc. 123, 2291 (2001);
6. H. G. Gallagher, K. J. Roberts, J. N. Sherwood, and L. A. Smith, J. Mater. Chem. 7(2), 229 (1997);
6. H. G. Gallagher and J. N. Sherwood, J. Chem. Soc. Faraday Trans. 92(12), 2107 (1996);
6. J. Clarkson, W. E. Smith, D. N. Batchelder, D. A. Smith, and A. M. Coats, J. Molec. Struct. 648(3), 203 (2003).
7. L. L. Stevens, N. Velisavljevic, D. E. Hooks, and D. M. Dattelbaum, Appl. Phys. Lett. 93(8), 081912 (2008).
8. M. Ya. Vasil'ev, D. B. Balashov, and L. N. Mokrousov, Zhurnal Fizicheskoi Khimii 34(11), 2454 (1960).
9. J. M. Rosen, D. V. Sickman, and W. W. Morris, “ The melting behavior of TNT,” Department of the Navy, U. S. Naval Ordnance Laboratory, NAVORD Report No. 6146, 1959.
10. S. V. Goryainov, V. A. Volodin, and A. M. Danilenko, Phys. Express 1(4), 242 (2011).
11. T. B. Brill and K. J. James, J. Phys. Chem. 97, 8759 (1993);
11. T. B. Brill and K. J. James, Chem. Rev. 93, 2667 (1993).
12. J. W. Beckmann, J. S. Wilkes, and R. R. McGuire, Thermochim. Acta 19, 111 (1977).
13. R. J. C. Brown and R. F. C. Brown, J. Chem. Ed. 77, 724 (2000).
14. V. V. Dubikhin, V. G. Matveev, and G. M. Nazin, Russ. Chem. Bull. 44, 258 (1995).
15. A. Ksiazczak and T. Ksiazczak, J. Therm. Anal. Calorim. 60, 25 (2000).
16. R. M. Guidry and L. P. Davis, Thermochim. Acta 32, 1 (1979);
16. Y. Y. Maksimov and V. F. Sopranovich, Combustion and Explosion: Proc. of the 4th All-Union Symp. on Combustion and Explosion (in Russian), Nauka, Moscow, 619 (1977);
16. V. G. Matveev, V. V. Dubikhin, and G. M. Nazin, Bull. Acad. Sci. USSR, Div. Chem. Sci. 27, 675 (1978);
16. L. Peide and K. K. Brower, in Proceedings of the International Pyrotechnics Seminar combined with the 2nd Bejing International Symposium of Pyrotechnics and Explosives, Bejing, China (1991), p. 473;
16. Y. E. He, J. P. Cui, W. C. Mallard, and W. Tsang, J. Am. Chem. Soc. 110, 3754 (1988).
17. W. B. Garn, J. Chem. Phys. 30(3), 819 (1959).
18. J. W. Kury, R. Don Beithaupt, and C. M. Tarver, Shock Waves 9, 227 (1999);
18. S. A. Sheffield, D. D. Bloomquist, and C. M. Tarver, J. Chem. Phys. 80(8), 3831 (1984);
18. N. L. Coleburn, J. Chem. Phys. 44(5), 1929 (1966).
19.These include errors in measured sample pressure using ruby and Au equations of state, measurement uncertainties in temperature due to thermocouple readings in the cell (±1 K), the thermocouple accuracy (∼2 K), and the temperature span from the onset of melting to complete amorphization (typically ±5 K), as indicated, for example, by the loss of diffraction patterns. The uncertainties in temperature are greater (up to ±20K) for the fast heating experiments, which were used as initial scoping studies to find the melt boundary.
20. R. S. Chellappa, D. M. Dattelbaum, N. Velisavljevic, and S. A. Sheffield, J. Chem. Phys. 137, 064504 (2012).
21. H. K. Mao, J. Xu, and P. M. Bell, J. Geophys. Res. 91(B5), 4673, doi:10.1029/JB091iB05p04673 (1986).
22. Y. Fei, A. Ricolleau, M. Frank, K. Mibe, G. Shen, and V. Prakapenka, Proc. Natl. Acad. Sci. U.S.A. 104, 9182 (2007);
22. O. L. Anderson, D. G. Isaak, and S. Yamamoto, J. Appl. Phys. 65(55), 1534 (1989).
23. W. C. McCrone, Discuss. Faraday Soc. 5, 158 (1949);
23. D. W. Moore, L. A. Burkardt, and W. S. McEwan, J. Chem. Phys. 25, 1235 (1956);
23. R. Mu, Y. Xue, D. O. Henderson, and D. O. Frazier, Phys. Rev. B 53, 6041 (1996);
23. R. L. McKenney, W. E. Stevens, and T. G. Floyd, J. Energetic Mater. 16, 245 (1998).
24.See supplementary material at for supplementary Figure 1 and supplementary video showing visual changes to TNT upon decomposition at 4 GPa, supplementary Figure 2 showing a Raman spectrum and x-ray diffraction pattern of the amorphous carbon product obtained upon decomposition of TNT at high pressures, and Raman and far-IR spectra of molten/recrystallized TNT, and a supplementary Appendix describing the equation of state methodology and unreacted equation of state for TNT. [Supplementary Material]
25. R. Kalish, A. Reznik, K. W. Nugent, and S. Prawer, Nucl. Instrum. Methods Phys. Res. B 148, 626 (1999);
25. A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000);
25. P. Koidl, Ch. Wild, B. Dischler, J. Wagner, and M. Ramsteiner, Mat. Sci. Forum 52–53, 41 (1990);
25. J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt, and S. R. P. Silva, J. Appl. Phys. 80, 440 (1996).
26. P. Chan, F. Huang, and S. Yun, Carbon 41, 2093 (2003);
26. B. Manoj and A. G. Kunjomana, Int. J. Electrochem. Sci. 7, 3127 (2012).
27. E. A. Glascoe, J. M. Zaug, and A. K. Burnham, J. Phys. Chem. A 113(48), 13548 (2009).
28. Z. A. Dreger and Y. M. Gupta, J. Phys. Chem. A 117(25), 5306 (2013).
29. L. Ciabini, F. A. Gorelli, M. Santoro, R. Bini, V. Schettino, and M. Mezouar, Phys. Rev. B 72, 094108 (2005);
29. L. Ciabini, M. Santoro, R. Bini, and V. Schettino, J. Chem. Phys. 116, 2928 (2002);
29. L. Ciabini, M. Santoro, R. Bini, and V. Schettino, Phys. Rev. Lett. 88(8), 085505 (2002).
30. L. Ciabini, M. Santoro, F. A. Gorella, R. Bini, V. Schettino, and S. Raugei, Nature Mater. 6, 39 (2007).
31. J. F. Cannon, J. Phys. Chem. Ref. Data 3(3), 781 (1974).
32. F. A. Lindemann, Phys. Z. 11, 609 (1910).
33. F. D. Stacey and R. D. Irvine, Aust. J. Phys. 30, 631 (1977).
34. P. R. Bowden, R. S. Chellappa, D. M. Dattelbaum, and R. T. Menikoff, “ Evolution of the phonon and vibron density of states of 2,4,6-trinitrotoluene with compression,” J. Phys. Chem. A (unpublished).
35. S. M. Stishov, Sov. Phys. Usp. 11, 816 (1969).
36. A. N. Dremin, S. A. Koldunov, and K. K. Shvedov, Combustion, Explosion, Shock Waves 7(1), 87 (1971);
36. D. M. Dattelbaum and S. A. Sheffield, Los Alamos National Laboratory (unpublished);
36. G. I. Kanel' and A. N. Dremin, Combustion, Explosion, Shock Waves 13(1), 71 (1977).

Data & Media loading...


Article metrics loading...



2,4,6-trinitrotoluene (TNT) is a molecular explosive that exhibits chemical stability in the molten phase at ambient pressure. A combination of visual, spectroscopic, and structural (x-ray diffraction) methods coupled to high pressure, resistively heated diamond anvil cells was used to determine the melt and decomposition boundaries to >15 GPa. The chemical stability of molten TNT was found to be limited, existing in a small domain of pressure-temperature conditions below 2 GPa. Decomposition dominates the phase diagram at high temperatures beyond 6 GPa. From the calculated bulk temperature rise, we conclude that it is unlikely that TNT melts on its principal Hugoniot.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd