Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/104/21/10.1063/1.4879848
1.
1. I. M. Baker, S. S. Duncan, and J. W. Copley, Proc. SPIE 5406, 133 (2004).
http://dx.doi.org/10.1117/12.541484
2.
2. A. Krier and W. Suleiman, Appl. Phys. Lett. 89, 083512 (2006).
http://dx.doi.org/10.1063/1.2337995
3.
3. A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, Appl. Phys. Lett. 93, 111107 (2008);
http://dx.doi.org/10.1063/1.2980451
3. A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, IEEE Photonics Technol. Lett 21(13 ), 866 (2009).
http://dx.doi.org/10.1109/LPT.2009.2019625
4.
4. S. Mallick, K. Banerjee, S. Ghosha, E. Plis, J. B. Rodriguez, S. Krishna, and C. Grein, Appl. Phys. Lett. 91, 241111 (2007).
http://dx.doi.org/10.1063/1.2817608
5.
5. Y. L. Goh, D. S. G. Ong, S. Zhang, J. S. Ng, C. H. Tan, and J. P. R. David, IEEE Lasers and Electro-Optics Society, LEOS Annual Meeting Conference Proceedings 2009, 4–8 October 2009 (IEEE, 2009), pp. 293294.
6.
6. E. K. Duerr, M. J. Manfra, M. A. Diagne, R. J. Bailey, J. P. Donnelly, M. K. Connors, and G. W. Turner, Appl. Phys. Lett. 91, 231115 (2007).
http://dx.doi.org/10.1063/1.2822447
7.
7. O. V. Sulima, M. G. Mauk, Z. A. Shellenbarger, J. A. Cox, J. V. Li, P. E. Sims, S. Datta, and S. B. Rafol, in IEE Proc.: Optoelectron. 151(1 ), 15 (2004).
http://dx.doi.org/10.1049/ip-opt:20040142
8.
8. S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson, and D. L. Huffaker, Appl. Phys. Lett. 88, 131911 (2006).
http://dx.doi.org/10.1063/1.2172742
9.
9. S. Huang, G. Balakrishnan, and D. L. Huffaker, J. Appl. Phys. 105, 103104 (2009).
http://dx.doi.org/10.1063/1.3129562
10.
10. M. Mehta, G. Balakrishnan, S. Huang, A. Khoshakhlagh, A. Jallipalli, P. Patel, M. N. Kutty, L. R. Dawson, and D. L. Huffaker, Appl. Phys. Lett. 89, 211110 (2006).
http://dx.doi.org/10.1063/1.2396897
11.
11. J. B. Rodriguez, L. Cerutti, and E. Tournié, Appl. Phys. Lett. 94, 023506 (2009).
http://dx.doi.org/10.1063/1.3072596
12.
12. K. C. Nunna, S. L. Tan, C. J. Reyner, A. R. J. Marshall, B. Liang, A. Jallipalli, J. P. R. David, and D. L. Huffaker, IEEE Photonics Technol. Lett. 24, 218 (2012).
http://dx.doi.org/10.1109/LPT.2011.2177253
13.
13. A. Jallipalli, K. Nunna, M. N. Kutty, G. Balakrishnan, G. B. Lush, L. R. Dawson, and D. L. Huffaker, Appl. Phys. Lett. 95, 072109 (2009).
http://dx.doi.org/10.1063/1.3210783
14.
14. S. Sridaran, A. Chavan, and P. S. Dutta, J. Cryst. Growth 310, 1590 (2008).
http://dx.doi.org/10.1016/j.jcrysgro.2007.11.186
15.
15. G. E. Stillman and C. M. Wolfe, “ Avalanche photodiodes,” in Infrared Detectors II, Semiconductors and Semimetals Vol 12, edited by R. K. Willardson and A. C. Beer (Academic Press, New York, 1977), pp. 291393.
16.
16. S. A. Plimmer, J. P. R. David, and D. S. Ong, IEEE Trans. Electron Devices 47, 1080 (2000).
http://dx.doi.org/10.1109/16.841244
17.
17. B. K. Ng, J. P. R. David, S. A. Plimmer, M. Hopkinson, R. C. Tozer, and G. J. Rees, Appl. Phys. Lett 77(26 ), 4374 (2000).
http://dx.doi.org/10.1063/1.1336556
18.
18. R. J. McIntyre, IEEE Trans. Electron Devices 13(1 ), 164 (1966).
http://dx.doi.org/10.1109/T-ED.1966.15651
19.
19. J. C. Campbell, S. Chandraskhar, W. T. Tsang, G. J. Qua, and B. C. Johnson, J. Lightwave Technol. 7(3 ), 473 (1989).
http://dx.doi.org/10.1109/50.16883
20.
20. K. F. Li, D. S. Ong, J. P. R. David, G. J. Rees, R. C. Tozer, P. N. Robson, and R. Grey, IEEE Trans. Electron. Devices 45(10 ), 2102 (1998).
http://dx.doi.org/10.1109/16.725242
21.
21. D. S. Ong, K. F. Li, G. J. Rees, J. P. R. David, and P. N. Robson, J. Appl. Phys. 83(6 ), 3426 (1998).
http://dx.doi.org/10.1063/1.367111
22.
22. B. K. Ng, J. P. R. David, R. C. Tozer, M. Hopkinson, G. Hill, and G. J. Rees, IEEE Photonics Technol. Lett. 14(4 ), 522 (2002).
http://dx.doi.org/10.1109/68.992598
23.
23. F. Capasso, A. Y. Cho, K. Mohammed, and P. W. Foy, Appl. Phys. Lett. 46(7 ), 664 (1985).
http://dx.doi.org/10.1063/1.95521
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/21/10.1063/1.4879848
Loading
/content/aip/journal/apl/104/21/10.1063/1.4879848
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/104/21/10.1063/1.4879848
2014-05-28
2016-09-26

Abstract

Interfacial misfit arrays were embedded within two avalanche photodiode (APD) structures. This allowed GaSb absorption layers to be combined with wide-bandgap multiplication regions, consisting of GaAs and AlGaAs, respectively. The GaAs APD represents the simplest case. The AlGaAs APD shows reduced dark currents of 5.07 Acm−2 at 90% of the breakdown voltage, and values for effective below 0.2. Random-path-length modeled excess noise is compared with experimental data, for both samples. The designs could be developed further, allowing operation to be extended to longer wavelengths, using other established absorber materials which are lattice matched to GaSb.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/104/21/1.4879848.html;jsessionid=jJtKZlmEh1C6GYLEuHPQmeY-.x-aip-live-06?itemId=/content/aip/journal/apl/104/21/10.1063/1.4879848&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/104/21/10.1063/1.4879848&pageURL=http://scitation.aip.org/content/aip/journal/apl/104/21/10.1063/1.4879848'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,